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Preface

The flow through the various stages of turbomachines is inherently unsteady, pri-

marily due to the relative motion between adjacent stator and rotor blade rows,

though other factors such as aerodynamic mistuning, temperature distortions due

to blocked burners may also become significant. The unsteadiness can persist

through several stages and may excite either a structural or an acoustic mode and

such resonances can cause severe vibration problems. The overall picture is further

complicated because of other events such as surge, stall and rotating stall. In any

case, such unstable phenomena are increasingly becoming limiting factors in devel-

oping improved-efficiency designs, especially when flexible, slender and unshrouded

blades are used. From an industrial prospective, it is clear that there is a pressing

need for formulating validated predictive models to reduce the design cycle and,

consequently, cost.

Such is the aim of the present work and two different methods of simulating 3D

viscous unsteady turbomachinery flows were developed: non-linear time marching

and frequency linearised method. The contributions to CFD modelling include

an efficient discretisation of the viscous terms, the linearisation of the turbulence

model and the development of a multigrid methodology for viscous unsteady flows.

Although both the non-linear and linearised methods can use general unstructured

meshes, a novel semi-structured mesh generator was developed for computational

efficiency. Over standard structured meshes, such a route provides a significant

improvement both in the smoothness of the grid-spacing and in resolving particular

aspects of the blade passage geometry. Leading- and trailing-edge regions are

discretised without generating superfluous points, while wakes and shocks can be

captured using local refinement techniques. A particular feature of the methodology

is the use of mixed element grids, consisting of triangles and quadrilaterals in 2D,

and of tetrahedra, pyramids, triangular prisms and hexahedra in 3D.

The final part of the thesis presents a detailed unsteady flow analysis for forced

ii
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response prediction of a 3D transonic turbine stage. The main aim is to compare

the performance of the non-linear time-marching and linearised flow simulation

methods when predicting the unsteadiness due to stator-rotor interactions. The

results obtained with the two method were found to be quantitatively similar al-

though non-linearities are evident in the leading-edge region where the potential

flow interaction is dominant.

Finally, an analysis of the different unsteady effects caused by potential flow and

wake-blade interactions was also made.
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Chapter 1

Introduction

This Chapter introduces unsteady turbomachinery flows and the computational

fluid dynamics (CFD) methods that are currently used for simulating such phe-

nomena. A comprehensive description of the different unsteady flow phenomena

is first given. The causes of such phenomena and their effects on turbomachinery

performance are discussed in some detail. The second part the Chapter is focused

on the application of CFD methodos to simulate unsteady turbomachinery flows for

forced response prediction. Different numerical techniques are described together

with their assumptions and limitations. The last part of the Chapter outlines the

objectives of the thesis, the approach that will be followed throughout the research

project and its expected contribution to the field.

1.1 Unsteady Turbomachinery Flows

Turbomachinery stages are designed to produce work on the fluid flow which passes

through them. This is true for both turbine rotor blades, where the air flow de-

creases its total enthalpy in order to allow the blade rotation; and for compressor

rotor blades, where the fluid receives energy from the rotation of the blade, thus

increasing its total enthalpy. For a flow with negligible body forces, the first low

of thermodynamics can be written as

DH

Dt
=

1

ρ

∂p

∂t
(1.1)

where H is the total enthalpy, p the pressure and ρ the density of the fluid with
D
Dt

indicating the convective (or total) derivative. Equation (1.1) shows that, in

1
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order to produce work, i.e. changing the total enthalpy of the fluid, the fluid flow

within turbomachinery blade rows must be unsteady. This is consistent with the

fact that, in the case of a turbine rotor blade, where the total enthalpy decreases,

a stationary observer would see, at a fixed viewpoint, a decreasing pressure with

time (∂p
∂t
< 0) since first the pressure and then the suction side of the passage will

go past the observer’s point of view. This relative blade row motion is essential for

turbomachines to produce work.

On the other hand, the relative motion causes complicated unsteady interactions

between adjacent blade rows which can persist through several stages and can cause

severe vibration problems. The wake shed by the downstream blade is unsteady

for the upstream one; the potential field associated with blade lifts also causes

unsteadiness for adjacent blade rows. Other factors, such as aerodynamic mistun-

ing, i.e. stator throat width variations due to assembly tolerances, temperature

distortions, due to blocked burners, may also become significant in causing un-

steady excitation forces with low-order harmonics, the so-called low engine order

excitation (LEO). Blade vibration is another source of unsteadiness and the over-

all picture is further complicated because of other inherently unsteady phenomena

such as vortex shedding, surge, stall and rotating stall, though some are associated

with part-speed only.

Such unsteady phenomena play a crucial role in the aeroelastic and aeroacoustic

behaviour of the blades and they are increasingly becoming limiting factors in

the developing improved-efficiency designs, especially when flexible, slender and

unshrouded blades are used. From an industrial prospective, it is clear that there

is a pressing need for formulating validated predictive models to reduce the design

cycle and, consequently, cost.

This thesis will address such a problem and focus on the numerical simulation of

unsteady turbomachinery flows for forced response predictions.

1.1.1 Forced response

When the rotating blades pass through flow defects created by the upstream and

downstream blade rows, the ensuing large unsteady aerodynamic forces can cause

excessive vibration levels, hence the term forced response. One of the first design

steps, for minimizing the response levels, is the Campbell diagram of Fig. 1.1

which indicates the possibility of an assembly mode being excited at a particular
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rotational speed or its multiples, the so-called engine order (EO) excitation. The

Campbell diagram is a plot of the bladed disc mode family frequency against rotor

speed, onto which the engine order lines are superimposed. Forced response occurs

when a particular engine order and the assembly frequency lines cross, as indicated

by circles in Fig. 1.1. For this reason, forced response is also called synchronous

vibration as it occurs when two frequencies match.

Forced response problems may be alleviated by reducing the aerodynamic forcing,

or by controlling the resulting vibration1. It may be removed entirely by moving

coincident frequencies out of the running range. Unfortunately, it is not usually

possible to move all resonances out of the running range because aeroengines oper-

ate over a wide range of speeds and aerodynamic conditions. So, it is of paramount

importance to be able to evaluate the unsteady aerodynamic loads in order to cal-

culate the magnitude of aerodynamic responses for fatigue life predictions. This

problem is usually more severe in HP turbines, where the blades are already under

large thermal and centrifugal loading. Jay & Fleeter (1987) give an overview of the

various aspects of forced response investigation. An assessment of unsteady flows

in turbines caused by the relative blade motion is given by Sharma et al. (1992).

In aerospace engineering, it is common practice to display engine test results in the

form of a modified Campbell diagram from which both flutter and forced response

behaviour can be seen. In such cases, the out-of-plane axis represents the vibra-

tion amplitude and flutter is observed at nearly constant frequency, usually across

several engine-order lines (Fig. 1.1).

The main sources of unsteadiness, which can cause forced blade vibrations, can be

due to the wake passing from upstream blade rows (wake-blade interaction) and

the potential field of up/downstream blade rows.

Wake-rotor interaction. The stator wakes, which can be assumed to be ap-

proximatively steady in the stator frame of reference, are unsteady in the rotor

frame of reference since the rotor is moving through the wakes and, consequently,

unsteady pressure waves are created. Although the generation of stator wakes is

viscous phenomenon, the subsequent interaction with the rotor blade is primar-

ily an inviscid process and hence can be modelled, as a first approximation, by

the Euler equations. This allows two different approaches in numerical modeling.

The first is to perform a full Navier-Stokes calculation for both the stator and ro-

1A way of achieving this is the use of under platform dampers
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tor blades (Rai 1987, 1990, Arnone 1995. The second is to perform an unsteady

inviscid calculation for just the rotor blade row, with the wakes being somehow

specified as unsteady inflow boundary conditions (Hodson 1985, Giles 1987, Ko-

rakianitis 1992a, 1992b, 1993). This latter approach is computationally much more

efficient, but assumes that one is not concerned about the unsteady heat transfer

and other viscous effects on the rotor blades and that the wake is steady in the

stator frame of reference.

Potential interaction. Such interaction cause unsteadiness due to the fact that

the pressure in the region between the stator and rotor blade rows can be de-

composed approximately into a part which is steady and uniform, a part that is

non-uniform but steady in the rotor frame and a part that is non-uniform but

steady in the stator frame. Therefore, as the rotor blades move, the stator trailing

edges experience an unsteady pressure due to the non-uniform part that is locked to

the rotors, and the rotor leading edges experience an unsteady pressure due to the

non-uniform part that is locked to the stator. This is a purely inviscid interaction

, hence the term potential interaction. There are again two modelling approaches:

the first is an unsteady inviscid calculation of the stator and rotor blade rows (Giles

1990b, Suddhoo et al. 1997, Rai 1987, 1990, Sbardella & Peiró 1997). The second

is an unsteady inviscid calculation for just one of the blade rows, either the sta-

tor or the rotor, with the unsteady pressure being specified as boundary condition

(Korakianitis 1992a, 1992b, 1993, Manwaring & Wisler 1993). The latter approach

is more efficient but, unfortunately, the potential stator/rotor interaction becomes

important when the spacing between the stator and the rotor is extremely small,

and/or there are shock waves moving in the region between them. Consequently,

one does not usually know what to specify as unsteady boundary conditions.

Low engine order (LEO) excitation. Both wake-rotor and potential-flow in-

teraction can be regarded as classical forced response problems related to blade

passing frequency. For such forced response problems, the frequency of the exci-

tation forces is a known function of the number of the up/downstream blades and

the rotational speed. The second type of forced response is much more difficult to

deal with as the controlling parameters and the exact excitation mechanisms are

poorly understood. However, the unsteady aerodynamic forcing function is known

to be made of low-order harmonics as it is responsible for exciting low-order nodal
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diameter assembly modes, hence the term LEO forced response. From an industrial

perspective, the LEO forced response may be more important than the classical

forced response as there are no established design procedures for its avoidance.

Many factors, such as flow angle, rotor-stator axial gap, combustion effects, effects

of up-downstream stages, are thought to influence the LEO excitation mechanism

but no symmetric trends can be observed. Sayma (1998) gives an overview of dif-

ferent factors which may effect the LEO forced response. Manwaring & Kirkeng

(1997) present an investigation for forced response on a low pressure (LP) turbine

blade row, due to low-engine order temperature distorsions caused by the upstream

combustor. Sayma et al. (2000) predicted the LEO excitation arising from a stator

blade throat width variations.

1.1.2 Flutter

Flutter is defined as an unstable and self-excited vibration of a body in an air-

stream and it results from a continuous interaction between the fluid and the

structure, either or both of which may be non-linear in nature. Flutter is an aeroe-

lastic phenomenon. Collar (1946) define aeroelasticity as the study of the mutual

interaction that takes place within the triangle of inertial, elastic and aerodynamic

forces on structural members exposed to an airstream.

In turbomachinery blade rows, the structure to fluid mass ratio tends to be high

while the same parameter is much lower for wings. Thus, whereas the wing flutter

usually occurs as a result of coupling between the (bending and torsional) modes,

turbomachinery blade flutter tends to be a single mode phenomenon as the aero-

dynamic forces, which remain much smaller than the inertial and stiffness ones,

cannot usually cause modal coupling. In the former case, the aeroelastic mode

can be significantly different from the structural one, in both frequency and mode

shape, while this is usually not the situation in the latter case. However, there may

still be discrepancies between the aeroelastic mode and the corresponding struc-

tural mode. Coupled mode turbomachinery flutter cannot be ruled out, and may

occur in modern designs where blading tends to become thinner and more highly

loaded to improve the aerodynamic efficiency. In any case, flutter is a particularly

difficult problem in turbomachinery cases since there are many additional features

with not fully-understood consequences: flow distortions due to up and downstream

blade rows, intake effects, coupling of assembly modes, loss of spatial periodicity of
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vibration due to aerodynamic effects and blade-to-blade manufacturing differences,

a feature which is known as mistuning (Ewins 1974).

Reviews of advances in the field of aeroelasticity in turbomachine applications

have been published by Sisto (1953), Fleeter (1979), Platzer (1982), Sisto (1987b),

Dowell et al. (1989), Bendiksen (1991), Gerolymos (1992), Marshall & Imregun

(1996).

A typical compressor map which indicates the different flutter regions is shown in

Fig. 1.2. This map shows the various possible flutter regimes: stall flutter, choke

flutter and various type of supersonic flutter. Sisto (1987a) gives an overview of

the different types of flutter in modern compressor and fan. In this review paper

particular attention as been devoted to the illustration of classical and modern

prediction models.

Stall flutter. As shown in Fig. 1.2, the aerodynamic conditions, at which stall

flutter tends to occur, are at part-speed with high back pressure. In such condi-

tions, the incidence onto the blades is high and the blade boundary layer becomes

thicker. At transonic flow conditions, which are typical of front stage fans, a shock

wave stands outside the blade passage, i.e. misses the leading-edge of the next

blade. This leads to strong shock/boundary-layer interaction, which may be an

important part of the stall flutter mechanism. Stall flutter differs considerably

from classical flutter, i.e. with attached flow (Sisto 1987b). The mechanism for

net energy transfer from the airstream to an oscillating blade need not to rely on

elastic or aerodynamic coupling between two modes, nor upon a phase lag between

a displacement and its aerodynamic reaction. The essential feature of stall flutter

is the non-linear aerodynamic reaction to the motion of the blades. Dowel et al.

(1989) describe a models for bending and torsional stall flutter including the basic

instability mechanism and its principal features. Adamczyk et al. (1982) present

an analysis of supersonic stall flutter of modern fan assemblies.

Choke flutter. Compared to stall flutter, choke flutter usually occurs at the

opposite end of the compressor map. Here the incidence onto the blades decreases

and becomes negative. At subsonic flow conditions, this may lead to the separation

of the boundary layer from the pressure surface, and the flutter mechanism is similar

to that of stall flutter. At transonic conditions, choke will normally occur before

stall and large unsteady pressures from oscillatory shocks may cause flutter. Choke
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flutter is described qualitatively by Dowel et al. (1989).

Although low-pressure turbine stages are also known to be prone to flutter (Sayma

et al. 1997), fan flutter stability is usually considered to be more critical as this

component can be exposed to effects such as inlet distortion due to gusts, cross-

winds and foreign object damage. Therefore, a higher flutter margin needs to be

incorporated into its design.

1.1.3 Inherent unsteadiness

Several unsteady phenomena may result from aerodynamic instabilities of the fluid.

Such instabilities are primarily due to the viscosity of the fluid and apply to both

turbine and compressor blades. Two main aerodynamic instabilities are of concern

in turbomachinery flows: vortex shedding and rotating stall.

Vortex Shedding. Trailing edge vortex shedding is a major source of unsteadi-

ness in turbomachinery when viscous flow exits via a blunt blade trailing-edge. This

unsteadiness is particularly pronounced in turbines where very thick trailing-edges

are needed to accommodate blade cooling passages. Some experimental works sug-

gested that the wake loss in a turbine is largely due to the formation of a vortex

shed. Unfortunately, the detailed mechanism of vortex shedding loss production

is still not quite clear. One observation is that, when vortex shedding occurs, the

total pressure just downstream of the trailing edge (base region) is significantly

lower than that of the free-stream, producing a base pressure loss (Wilson 1989).

Predicting the base pressure is an important part of predicting the loss produced

by the vortex shedding. Because vortex shedding in turbomachines has a small

length scale and high frequency, the experimental and numerical investigations are

difficult and expensive. However, understanding and predicting trailing-edge vor-

tex shedding is important to reduce the total losses further in turbine designs and

is receiving more and more attention. Cicarelli & Sieverding (1996) present a nu-

merical simulation in order to assess the effects of vortex shedding on the unsteady

pressure distrubution around the trailing-edge of a turbine cascade. Magagnato

(1999) uses different forms of two equation turbulence models in order to predict

the experimentallly observed vortex shedding from a turbine trailing edge. The

results indicates a strong dependency on the particular turbulence model used.
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Denton (1993) discusses turbine vortex shedding in term of losses due to entropy

generation.

Rotating stall. Stall may occur when a compressor blade runs off design, and

the incidence on the blade increases (above the working line in Fig. 1.2). As a

consequence, at least three different instabilities may occur: the first is stall flut-

ter, described above; the second is surge, where the higher pressure downstream of

the stalling stage causes the whole flow to reverse. This serious system instability

can cause structural damage very suddenly. The third instability, rotating stall,

occurs when, due to differences in the flow around the annulus (inlet distortion or

upstream obstruction) only some of the blades stall. The stalled cell then causes a

higher incidence onto the blades nearest in the opposite direction to the rotation

(causing those to stall), and a lower incidence onto the blades nearest in the rotat-

ing direction (causing those to recover). Thus the stalled cell rotates around the

annulus in the opposite direction to the rotor rotation. This phenomenon obviously

causes large unsteady forces on the blades, so at least some forced vibration would

be expected to accompany rotating stall. The propagative behaviour of rotating

stall was initially described by Emmons et al. (1955). Advances in the area of

rotating stall has been reported by Greitzer (1976a, 1976b), Cumpsty (1989).

1.1.4 Further aspects of unsteady flows in turbomachines

There are two main parameters which are of paramount importance in turboma-

chinery unsteady flows and these are the interblade phase angle and the reduced

frequency. The interblade phase angle can be associated with both flutter and

forced response problems (stator/rotor interaction). This quantity, firstly intro-

duced by Lane (1956) for flutter problems, indicate the phase difference between

vibrating neighboring blades. The possible values of the interblade phase angle in

a flutter analysis are defined by

ϕ =
2πn

Nb

(1.2)

where Nb represents the number of blade in the annulus and n represents the wave

number (n = 0, 1, . . . , Nb).

For stator/rotor interaction an equivalent definition can be formulated. This time,

the interblade phase angle is decided by the pitch ratio of neighboring blade rows.
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For example, for a single turbine stage shown in Fig. 1.3, the stator blade row has

a blade pitch given Ps =
2π
Ns

and the rotor blade a pitch given by Pr =
2π
Nr

, where

Ns and Nr are the blade numbers. Assuming Ns ≤ Nr, the interblade phase angle

between the upper and periodic boundaries is:

ϕ = 2π
(
1− Ns

Nr

)
(1.3)

The interblade phase angle determinates the number of blade passages that must

be included in the calculations unless some other assumption are introduced to

limit the computational domain to a single passage (Erdos et al. 1977, Giles 1987,

Verdon 1993).

The reduced frequency is defined in (A.8). For stator/rotor interaction the reduced

frequency is related to the interblade phase angle and the relative rotation speed

of the two rows as indicated in (C.7). The reduced frequency can be interpreted as

the ratio of the time taken for a fluid particle to go past the blade chord (or pitch)

to the period of the flow unsteadiness. For small values of the reduced frequency,

the flow is quasi-steady, while unsteady effects dominate for large values.

1.2 Computational Prediction Methods

The development of numerical methods for the prediction of unsteady flows in

turbomachinery applications has been motivated primarily by the need to predict,

within a prescribed level of accuracy, the aeroelastic and aeroacoustic behaviour

of the blading. For the numerical prediction of the flutter margins and the actual

level of blade vibration, an unsteady aerodynamic analysis is only one component

of an overall design prediction system. However, because of the complexity of the

unsteady fluid dynamic environment, this component has generally been regarded

as the one requiring the most research attention.

The unsteady aerodynamic analysis which have been used in aeroelastic and aeroa-

coustic design applications was based on classical 2D subsonic and supersonic anal-

ysis, supplemented by a good deal of empiricism. This classical 2D methods are

based on linearised flow theories which can essentially applied to lightly loaded

thin airfoil cascades. Whitehead (1987) gives a review of these methods. Classical

methods provide very efficient unsteady aerodynamic response predictions that are

useful near design operating conditions, but they are not appropriate off design,
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where blade loading effects are important, or for transonic flows with embedded

shock discontinuities.

To overcame the limitations of the classical methods, the unsteady flow representa-

tion needed to be improved taking into account effects due to the blade loading and

the steady state mean flow which is highly non linear. During the last past decade,

significant advances in unsteady aerodynamic prediction based on CFD (Compu-

tational Fluid Dynamics) methodologies have been achieved. At the present time

there are two main approaches which deal with the prediction of unsteady flows

in turbomachines: i) the time linearised methods and ii) the fully non-linear time

marching methods.

1.2.1 Methods for linearised unsteady aerodynamics

These methods are based upon the assumption that the unsteadiness is a small

perturbation about a non-linear, steady-state flow field. Although solutions based

on these methods require significantly more computer time than classical solutions,

the improvement in the physical modelling, coupled with advances in CFD solution

procedures, are making them an increasingly attractive for aeroelastic and aeroa-

coustic design applications. In fact, the linearsiation of the unsteadiness allows the

calculations to be performed using a single passage for any interblade phase angle.

On the other hand, because these methods are all in the frequency domain, a new

calculation is needed for each frequency considered. The development history of

such methods is given by Verdon (1987, 1993).

An improvement over classical linearised inviscid flow methods was provided by

linearised potential methods, in which the steady flow is taken to be a solution of

the non-linear 2D full potential equation. Verdon & Caspar (1984) developed a

numerical method for solving the linear equations that result from assuming that

the unsteadiness is sinusoidal in time. This class of methods takes into account the

blade geometry and loading, and remains valid at high vibration frequencies. Such

potential methods are all for 2D flows, with the addition of stream-tube thickness

and radius change to introduce some 3D effects. The complexities of extending

the potential analysis to 3D flows, the computational cost of the standard matrix

solution methods and the need to capture the flow details more accurately led to

the development of linearised Euler methods.

Hall & Crawley (1989) developed a finite element method for solving the linear Eu-
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ler equations in 2D, following the preliminary research by Ni & Sisto (1975). Hall &

Crawley (1989) predicted subsonic unsteady cascade flows, and used a shock-fitting

technique to calculate unsteady shock displacements in a 2D duct. However, they

were not able to extend the shock-fitting ideas to cascade geometries because shock

structures in real turbomachines can be complex and shocks can appear in unex-

pected locations, requiring much more “intelligence” of a shock fitting algorithm

than is possible at present. The present area of research is therefore focused on the

implementation of linearised 2d and 3D Euler method which use shock capturing

techniques as those used for non-linear aerodynamics. Lindquist & Giles (1991)

have proven that, if correctly formulated and implemented, shock capturing can

produce the same results as shock fitting. Further work with shock capturing tech-

niques have been reported by Hall & Clark (1993), Hall & Lorence (1993), Hall et

al. (1994), Montgomery & Verdon (1997a, 1997b).

An active area of current research is to develop linearised Navier-Stokes methods,

including the linearisation of the turbulent eddy viscosity (Cizmas & Hall 1995 and

by Holmes et al. 1997). An original formulation will also be reported in this thesis.

1.2.2 Non-linear time-marching methods

Although linearised analyses meet the needs of turbomachinery designers for ef-

ficient predictions, they cannot model important unsteady flow phenomena asso-

ciated with finite amplitude unsteadiness (large shock excursion, shock-boundary

layer interaction, unsteady separation etc.). Over the last twenty years, there has

been a great deal of work on methods for calculating non-linear unsteady flows

by time-marching methods. Such methods provide a very useful research tool to

increase the understanding of unsteady flows in turbomachinery. However, ax-

ial gas turbine engines are multi-stage and, in a whole engine context, non-linear

time-marching methods are prohibitively expensive for the foreseeable future. The

main complicating factor, which leads to extraordinarily large computing times, is

the problem of the periodic boundary conditions. While linearised methods allow

calculations on a single blade passage for any interblade phase angle, non-linear

methods needs to include in the calculations a number of blade passages which de-

pends upon the interblade phase angle (1.2,1.3) unless some additional assumption

are made.

The pioneering of work was by Erdos et al. (1977) presented a 2D, unsteady,
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inviscid flow calculation of a fan stage with unequal pitches using a phase-shifted

periodicity condition. For the upper periodic boundary of each blade, this condition

can be expressed as:

U (x, y, t) = U (x, y − P, t−∆t) (1.4)

where the time lag ∆t is equal to the difference in pitches divided by the rotor

wheel speed (Fig. 1.3).

∆t =
Ps − Pr

V
(1.5)

The values on the lower periodic line are obtained by assuming that the flow is

periodic in time, with a period equal to the blade passing period T = P
V
. This

allows the solution domain to be restricted to a single blade passage region, but

a large amount of computer memory is still needed to store the unsteady flow

variables at the two periodic boundaries over an entire period. However, the major

drawback of this method is the assumption of temporal periodicity. Hodson (1985)

modified Denton (1983) program and used Erdos’ technique to calculate wake-rotor

interactions in a low speed turbine. The incoming wake was specified as a boundary

condition, allowing the calculation to be performed with only the rotor blade. The

results showed that many phenomena associated with rotor-stator interactions are

dominated by inviscid rather than viscous effects. Rai (1987) published a paper

showing that stator/rotor interaction can be calculated using the thin-layer Navier-

Stokes equations. This paper generated considerable interest and sparked a lot of

research activity. However, in order to be able to perform the unsteady calculations

with few blade passages, without using the Erdos’ technique, Rai considered some

simple stator/rotor pitch ratios such as 1:1, 2:3 or 3:4 (Rai 1990). Further work

is reported by Jorgenson & Chima (1989), Giles (1990b), He (1990), He & Denton

(1991a, 1991b), Arnone (1995), Vahdati & Imregun (1995), Saxer & Felici (1996),

Sbardella & Peiró (1997), Sayma et al. (2000).

Giles (1987, 1990b), introduced the concept of time tilting in order to solve wake-

rotor and stator-rotor interactions with different blade pitches without assuming

that the flow is temporally periodic. In this approach, the governing equations are

rewritten in time inclined computational coordinates. This method eliminates the

temporal periodicity and the storage requirements of the phase-shifted periodicity
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approach by Erdos but introduces additional complexities into the solution pro-

cedure. Giles (1991) presented the numerical implementation of his time tilting

method into the 2D program UNSFLO.

However if one is interested in multistage calculations, then both Erdos’ and Giles’

simplified methods become impractical. As soon as there is more than one stage,

there is an unavoidable problem. If one considers a 11
2
stage calculation in which

the first and second stator rows have different numbers of blades with no common

factor, then each of the second stator row blades will experience a different unsteady

force depending in its circumferential position relative to the blades in the first

stator row. There is no mathematically correct way around this problem (Giles

1992). The only correct treatment is to analyse all three blade rows. This approach

is too expensive although some early attempts have been made by Sayma et al.

(1999) who presented the forced response analysis of a fan using the non-linear

time marching technique of Sayma at al. (2000). The computation is performed

on three whole blade rows, consisting of 11 struts, 33 variable inlet guide vanes

(VIGVs) and 26 rotor blades. A view of the computational mesh, which contains

about 4.2 million grid points, is shown in Fig. 1.4.

1.3 CFD Methods for Compressible Flows

Both linear and non-linear unsteady flow CFD methods are primarily based on

the solution of compressible inviscid or turbulent viscous flow equations. CFD

techniques have evolved rapidly as a discipline and are increasingly being used to

complement wind tunnels, both for preliminary and advanced design. Based on the

mathematical foundations laid by Godunov (1959) and Lax (1973) among others,

the field has come into its own in the last twenty years. Very significant advances

have been made in the areas of spatial discretisation, grid generation and solution

strategies. Tremendous advances in computer architecture and parallel processing

have also contributed to the very rapid advances seen over the last ten years.

When dealing with the numerical discretisation of the Navier-Stokes equations,

several distinct issues need to be addressed.

i) Spatial discretisation of the inviscid fluxes. The system of Euler equations math-

ematically belongs to a class called hyperbolic systems of conservation laws which

have, as their main feature, the possibility to develop discontinuities even when

the initial data are smooth. This means that a numerical algorithm needs to be



1.3- CFD methods for compressible flows 14

designed to be able to deal with such possibilities.

ii) The discretisation of the computational domain with structured, block-structured,

unstructured or mixed-element grids.

iii) Explicit or implicit time integration. This represents a very broad distinc-

tion since several other techniques, such as preconditioning and multigrid, can be

employed in order to accelerate convergence.

iv) Boundary conditions. The stability and accuracy of the numerical scheme may

hinge on how the boundary are treated.

1.3.1 A brief review of flux discretisation methods

The accurate and efficient discretisation of the hyperbolic conservation laws of fluid

dynamics has been studied by several authors. Roe (1981) developed an approxi-

mate version of the Riemann solver used by Godunov (1959) in his pioneering work,

and this approach is still one of the best numerical schemes for the discretisation of

the Euler equations. The Roe scheme belongs to the class of methods called Flux

Difference Splitting (FDS) where the numerical flux function is obtained through

a flow decomposition into acoustic, entropy and vorticity waves. Each wave is

then discretised according to its propagation speed in an upwind way. Other FDS

methods have been developed by Osher (1984), Pandolfi (1984), Harten (1983b),

Leveque (1985) and Einfeldt (1988, 1991).

In parallel with the FDS methods, a different class of schemes has been developed

where the spatial discretisation is obtained using central differencing stabilized by

an artificial dissipation term. Such methods, developed Beam & Warming (1976)

and by Jameson et al. (1981), are computationally more efficient then the FDS

ones but their stability relies on the explicit addition of artificial viscosity. This

requires the empirical determination of the so-called “free parameters”. On the

other hand, the upwind FDS method are considered to be parameter free. A third

class of methods, first developed by Stager & Warming (1981) and by van Leer

(1982), is known as Flux Vector Splitting (FVS). These methods introduce, in the

numerical discretisation, the signs of the wave propagation speeds (eigenvalues of

the flux Jacobian) but they do not attempt to solve an approximate Riemann

problem. Different types of FVS have been developed over the last decade with

the goal of devising an accurate numerical scheme for capturing shock and contact

discontinuity with minimal numerical dissipation and oscillation. Among other
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FVS methods, it is worth mentioning the AUSM (Advection Upstream Splitting

Method) scheme of Liou & Steffen (1993, 1996), the CUSP (Convective Upwind

Split Pressure) scheme by Jameson (1993, 1995) and the gas kinetic analogy of

Prendergast & Xu (1994).

Several authors extended the schemes above to second order accuracy (labelled

high resolution schemes by Harten), using different mathematical formulations.

Harten (1983a) introduced the important concept of TVD (Total Variational Di-

minishing) to extend Roe’s first order flux-difference scheme to second order. Van

Leer (1974, 1977a, 1977b, 1979) tackled the problem in a geometric sense introduc-

ing the MUSCL schemes (Monotone Upstream-centered Schemes for Conservation

Laws). Osher (1984), Osher & Chakravarthy (1984) contributed to the mathemati-

cal foundation of these concepts and providing the CFD community with solid basis

to simulate high-speed flows with shock waves and other type of discontinuity.

One of the most spectacular outcomes of the analysis and development of TVD

schemes is the realization that a bridge can be established between the upwind

FDS, FVS and central discretisation schemes. This allows central schemes to be

formulated with adapted dissipation satisfying TVD requirements. Key papers

which show the relationship between central difference and upwind schemes are

given by Swanson & Turkel (1992) and Jorgenson & Turkel (1993). Comparisons of

different numerical schemes are given by Woodward & Colella (1984) and Swanson

et al. (1997).

1.3.2 Structured versus unstructured grid debate

The mathematical formulation of the above schemes is developed in 1D because the

TVD analysis is not possible for multidimensional problem. On structured body-

fitted grids, these 1D models were extended to 2D and 3D in a natural by using

the so-called generalized coordinates. However, the task of generating efficient

structured grids for complex configurations remains a serious challenge. The desire

of computing flows over complex configurations spawned a surge of activity in the

area of unstructured grids2. The development of both structured and unstructured

grid solvers will now be examined in some detail.

In recent years, the rapid development of numerical methods for the solution of the

2The term unstructured refers to grids where the number of cells surrounding a typical node

does not necessarily remain constant.
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flow equations and the availability of powerful computers led to the emergence of

various systems for the prediction of complex turbomachinery flows. Most predic-

tion methods for turbomachinery flows use structured grids (Denton 1983, 1990,

Rai 1987, 1990, Dawes 1988, Arnone & Swanson 1993, Arnone 1995, Saxer & Fe-

lici 1996) On the other hand, unstructured grids received a great deal of research

and development for external compressible flows. Barth & Jespersen (1989), Barth

(1990, 1991, 1993), Peraire et al. (1992), Frink (1992, 1996), Mavriplis (1995a),

and Venkatakrishnan (1995a) give overviews of the status of compressible Euler

and Navier-Stokes solvers on unstructured grids. Different spatial and temporal

discretisation options for steady and unsteady flows are discussed.

It is only in recent years that unstructured tetrahedral grids found their way into 3D

turbomachinery applications (Dawes 1992, 1993, Vahdati & Imregun 1995, Sayma

et al. 2000). While unstructured grid methods provide flexibility for discretising

complex geometries, they have the drawback of requiring larger computer storage

and more CPU effort than their structured counterparts. Due to the relatively

simple shape of turbomachinery blades, structured grids are considered to be as

the most suitable route by many researchers for their discretisation. Design con-

siderations increasingly require the inclusion of complex features such as over tip

gap leakage, cooling holes in turbine blades, snubbered fan blades, fan assemblies

with intake ducts, struts and various other structural elements. Due to the com-

plexity of such geometries, the natural way forward is to use unstructured grids.

Although tetrahedral grids, the choice of which appears obvious, are relatively easy

to generate for inviscid flow calculations and away from the walls for viscous flow

calculations, the situation becomes more complicated in boundary layers, where

large aspect ratio cells are required for computational efficiency. In large parts

of the solution domain, the gradients normal to the walls are several orders of

magnitude larger than those along the walls, thus more grid points are required

in the former direction than in the latter. Tetrahedral grids are not ideal for use

in boundary layers where very small angles degrade the accuracy of the solution

(Aftosmis et al. 1994).

Such considerations led to the development of hybrid grid models where hexahedral

or prismatic cells can be used in the boundary layers and tetrahedral and prismatic

cells can be used to fill the domain away from the walls. The idea of using mixed

elements in an unstructured mesh technique is by no means novel, and has been

previously advocated by several authors (Barth 1990, Parthasarathy et al. 1995).
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In fact, many have recognized the benefits of mixed elements, but have nevertheless

advocated the use of standard tetrahedral grids, due to the homogeneity in the

data structures and relative discretisation simplicity. Mavriplis & Venkatakrishnan

(1995a), Moinier et al. (1999) presented unified solution techniques which can

handle mixed-elements grids.

For turbomachinery blades, Sbardella et al. (1997, 2000) presented a method to

generate hybrid semi-structured grids where the boundary layers are filled with hex-

ahedral cells and the rest of the domain is filled with triangular prisms. Such a route

not only provides a very efficient spatial discretisation over standard unstructured

grids but it also provides a much better grid quality over its fully structured coun-

terparts. When dealing with 3D blades, the present work will use semi-structured

grids for their computational efficiency, although the solver is written for general

hybrid unstructured grids. This is achieved by using an edge-data structure to

construct the discretisation over all element types. In this approach, the grid

is presented to the solver as a set of node pairs connected by edges. The edge

weights representing the inter-cell boundaries are computed in a separate prepro-

cessor stage. Consequently, the solver has a unified data structure where the nature

of the hybrid mesh is concealed from the main calculations loops.

1.3.3 Time integration using multigrid methods

Traditionally, time integration techniques may be classified into five groups: ex-

plicit, implicit direct method, iterative implicit method, preconditioning techniques

and multigrid methods. However, some techniques can be shown to be equivalent

to others and state-of-the-art time-stepping algorithms combine techniques from

several areas. Venkatakrishnan (1995b) gives an overview of the different time

marching techniques for solving both steady and unsteady flows. Unstructured

grid methods are compared to those used for structured, body-fitted grids. The

convergence characteristics of various implicit methods are compared for a number

of test cases.

Explicit methods represent a straightforward way of integrating the system of or-

dinary differential equations (ODEs) which arises from the spatial discretisation,

since they do not require any matrix inversion. Multistage Runge-Kutta explicit

methods have been widely used in the CFD community (Jameson et al. 1981, Jor-

genson & Chima 1989). The coefficients for these Runge-Kutta schemes techniques
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are optimised in order to yield a large CFL number and good damping properties

(Jameson 1985, Van Leer 1989). Local time stepping (Jameson et al. 1981, Denton

1983) and residual smoothing (Jameson et al. 1981, Arnone 1995) are employed

to accelerate convergence. Even with this methodology, the convergence to steady

state is usually unacceptably slow. For unsteady flow, multistage Runge-Kutta

algorithms are ideal for high-frequency unsteadiness3 where the choice of the time-

step is not restricted by stability considerations. However, the may result inefficient

for low-frequency unsteady flow and for viscous turbulent flow simulations.

Implicit direct methods, in where the Jacobian matrix is directly inverted, are non-

competitive for large problems since the matrix inversion procedure scales with n3,

where n is the number of unknowns (Venkatakrishnan & Barth 1989). Moreover

the governing equations are non-linear, thus a direct method cannot produce an

answer in a single iteration and must therefore be used iteratively.

Rather than inverting the Jacobian matrix directly at each time-step, a linearised

system of equations may be solved at each time-step using an iterative method.

This can substantially reduce the overall computational requirements since the

approximate linear system need not be solved to a high degree of accuracy. Also,

iterative methods generally exhibit lower computational complexity than direct

inversion methods. In deriving the implicit system, a common practice is the use

of a defect correction procedure which leads to a discretised Jacobian matrix which is

a order less accurate than the right-hand side (Tidriri 1995, Mavriplis 1998c). This

is not only due to storage considerations and computational complexity, but also

to the fact that the resulting lower-order matrix is better conditioned. However,

the mismatch between the discretisation and the Jacobian operators implies that

the resulting system is only moderately implicit. For unstructured meshes, the

formulation of an efficient iterative technique can be quite complicated. For this

reason, point-Jacobi iterative procedures have been widely used (Brenneis & Eberle

1990, Anderson and Bonhaus 1994, Sayma et al. 2000). Slack et al. (1994) compare

the point-Jacobi, Gauss-Seidel and LU decomposition time integration techniques

for inviscid flows on unstructured meshes.

Krylov methods4 represent an alternative to iterative methods. The general idea

is to obtain improved updates to the solution by using information generated at

previous updates. There are a number of different Krylov methods which have

3This is the case of computational aeroacoustics.
4A review of Krylov methods is given by Venkatakrishnan (1995).
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been developed, but for CFD problems the most prevalent Krylov method is the

GMRES method (Saad & Schultz 1986).

These classical implicit methods work relatively well for inviscid-flow calculation

but they may prove inadequate for high Reynolds number viscous flows because

of two reasons: (i) the need to use high aspect ratio cells to represent the steep

gradients in the boundary layer regions, and (ii) the overall increase in the num-

ber of mesh points for practical 3D aerodynamic configurations. A suitable algo-

rithm should be devised in order to take into account the interaction between the

discretised method, the computational mesh and the physics of the viscous flow.

Moreover, the right balance between the operation count, storage requirements

and parallel scalability is also very important. A general solution strategy, which is

suitable for devising efficient solution algorithms, is the multigrid approach (Wes-

seling 1992). The basic idea of a multigrid strategy is to accelerate the rate solution

convergence on a fine grid by using a series of coarser grids.

Explicit multigrid smoothers have been widely used in the CFD community for

solving both steady and unsteady flows. A popular explicit multigrid method is

the semi-discrete scheme of Jameson et al. (1981) which uses multi-stage Runge-

Kutta time stepping to integrate the system of ODEs resulting from the spatial

discretisation. Local time-stepping was also used in order to accelerate conver-

gence. Several researchers used the technique proposed by Jameson et al. (1981)

to obtain efficient solution procedures: Jameson (1985, 1993), Denton (1983), Mul-

der (1989, 1992) Peraire et al. (1992), Mavriplis & Martinelli (1994), Mavriplis &

Venkatakrishnan (1995b), Mavriplis (1995a), Melson et al. (1993), Parthasarathy

et al. (1995) and Arnone (1995).

However, despite considerable success for Euler computations, the multigrid ap-

proach have shortcomings for Navier-Stokes computations, especially high aspect

ratio cells are used inside the boundary layer region. One way of decreasing the

discrete stiffness caused by highly stretched cells is to use of a matrix time step or

preconditioner. Recently, considerable amount of research has been devoted to the

formulation of preconditioner multigrid algorithms for computing high Reynolds

number viscous flows. Point-Jacobi preconditioners (Pierce & Giles 1997, Pierce

et al. 1997) and line-Jacobi preconditioners (Mavriplis 1998b, 1998a) have been

reported in the literature. While point-Jacobi and line-Jacobi preconditioners are

used to decrease the stiffness arising from the grid anisotropy in boundary layer

regions, another class of preconditioners is also available for reducing the stiffness
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associated with low-speed compressible flows: Turkel (1987, 1993), Turkel et al.

(1996), Van Leer et al. (1991), Choi & Merkle (1993). An overview of modern

acceleration techniques, such as preconditioned multigrid, is given by Mavriplis

(1998c).

Appendix D presents a detailed literature review of the current state-of-the-art

multigrid techniques and develops a hybrid-grids Jacobi-preconditioned multigrid

method for turbomachinery steady and unsteady flow computations.

1.3.4 Non-reflecting boundary conditions

For convection dominated phenomena, such as those described by the compress-

ible Navier-Stokes equations, the formulation of correct boundary conditions is

extremely important and its impact on the numerical scheme is often dominating.

The reason for this strong influence can be traced back to the physical nature of

the convection propagation phenomena (Hirsh 1990). When obtaining a numerical

solution for the Euler or Navier-Stokes equations, one has no choice but to truncate

the computational domain. This is particularly true for internal flow simulations

where the inlet/outlet boundaries are placed typically less than one chord away

from the blade. For such configurations, the far-field flow contains a significant

component of several different wave numbers, especially for flows which are super-

sonic in the flow direction but subsonic in the axial direction. In this case shocks

propagate indefinitely and can be reflected by improper boundary conditions.

The term non-reflecting boundary condition (or absorbing boundary conditions)

indicates a far-field boundary treatment which should prevent any non-physical

reflection of waves which are leaving the computational domain. Specialized treat-

ments exist for steady-state flows, unsteady frequency-domain flows and unsteady

time-domain flows. The milestone paper by Engquist & Majda (1977) reported a

hierarchy of approximate non-reflecting boundary conditions for multidimensional

problems. The authors constructed a non-local perfectly absorbing boundary condi-

tion for the scalar wave equation and derived highly absorbing local approximations

by mean of Taylor series around the incidence angle of the outgoing waves. The

first-order approximation represents the so-called 1D approximation, or method of

characteristics, where only the waves which travel in the direction normal to the

far-field boundary are perfectly absorbed. This approach is the most commonly

used one for time-domain unsteady flow computations (Thompson 1987, 1990).
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An overview of different types of non-reflecting boundary conditions is given by

Givoli (1991) for a large number of problems.

Unfortunately, the paper by Engquist & Majda (1977) was written for mathe-

maticians, specialized in the analysis of partial differential equations and hence its

acceptance and implementation by the CFD community has been slow. Hedstrom

(1979) applied the 1D boundary conditions of Engquist & Majda to the unsteady

1D Euler equations. Higdon (1986b) discussed the initial-boundary value problem

theory for linear hyperbolic systems and gave a physical interpretation in terms

of wave propagation. Furthermore, Higdon (1986a, 1987) formulated a discrete

numerical version of the analytical absorbing boundary condition of Engquist &

Majda (1977).

During the late 1980s, a considerable amount of manpower was devoted towards the

formulation and implementation of accurate boundary conditions for the multidi-

mensional Euler equations. Engquist & Gustafsson (1987) investigated steady-state

non-reflecting boundary conditions and their impact on the rate of convergence in

practical steady-state flow calculations. Gustafsson (1988) applied Engquist & Ma-

jda (1977) theory to the 2D time-dependent Euler equations. For such a problem,

the perfectly absorbing boundary condition requires first a Laplace-transform at

the boundary, and then a Fourier-transform along in the boundary. Such exact

non-local boundary conditions are, in a mathematical sense, the best possible so-

lution of the problem. However, they are computationally cumbersome and they

are only available for simple problems with constant properties.

Giles (1988, 1990a) reported a unified theory for the construction of steady-state

and unsteady non-reflecting boundary conditions for the Euler equations. The

analysis was carried out using a decomposition of the linearised Euler equations

into Fourier modes. The single-frequency boundary conditions were used for con-

structing both the steady-state version (no time variation at steady-state, thus

frequency equal to zero) and the unsteady frequency-domain version (single known

frequency assumed for the unsteadiness). For non-linear unsteady aerodynamics,

Giles constructed approximate versions based on Taylor expansions, similar to the

formulation by Engquist & Majda (1977). Giles (1990a) applied the steady-state

version of these boundary conditions to 2D turbomachinery flows, showing their ef-

fectiveness in avoiding numerical reflections from the computational inflow/outflow

boundaries. An extension to 3D is reported by Saxer & Giles (1993). Ferm (1995)

presented accurate steady-state boundary-conditions for channel-flow configura-
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tions. He also studied the importance of a correct implementation in order to

enhance convergence.

Although accurate boundary condition formulations are now available to the CFD

community, their application has been mainly restricted to steady-state flows or

linearised frequency-domain unsteady flows. The implementation of accurate non-

reflecting boundary conditions for time-domain unsteady flows has been reported

in computational aeroacoustics (Tam & Webb 1993). For these applications, the

boundary conditions are constructed from an asymptotic solution of the govern-

ing equations for large distances, the so-called radiation boundary conditions. A

comparison between 1D characteristic (Thompson 1987, 1990), Fourier decomposi-

tion (Giles 1988, 1990a) and radiation boundary conditions (Tam & Webb 1993), is

given by Hixon et al. (1995), in the framework of computational aeroacoustics. It is

shown that, for unsteady time-domain method, the only acceptable outflow bound-

ary treatment is that by Tam & Webb (1993). Other schemes become acceptable

only in special cases when the flow is nearly perpendicular to the boundary. How-

ever, the radiation boundary conditions by Tam & Webb (1993) were developed

for the case of a uniform mean flow only.

An interesting way forward could involve the use of the absorbing boundary con-

ditions for linearised Euler equations via a perfectly matched layer (PML). This

method, developed by Hu (1996), uses additional computational regions adjacent to

the far-field boundaries of the computational domain. In these regions the govern-

ing equations are modified so that outgoing waves are either damped, accelerated

to supersonic conditions, decelerated or attenuated by combinations thereof. Anal-

ysis and applications of such sophisticated boundary conditions can be found in

Tam et al. (1993), Hesthaven (1998) and Abarbanel et al. (1999).

1.4 Objectives

This thesis deals with the development and application of a numerical tool for the

simulation of unsteady turbomachinery flows for forced response predictions. The

main goal is not only to produce a method suitable for industrial design but also

to explore its bounds of applicability to practical cases. Both linear and non-linear

time-marching unsteady flow models have been implemented using an advanced fi-

nite volume algorithm on unstructured meshes. The research code, called ALiNNS

(Advanced Linear-Nonlinear Navier-Stokes code), uses state-of-the-art CFD tech-
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niques for both spatial discretisation and temporal integration of the governing flow

equations. The main features of the methodology are the use of mixed-element grids

(also called hybrid grids) and a preconditioned agglomeration multigrid. Moreover

a semi-unstructured mesh generator, LEVMAP (LEVel MAPping), was developed

in order to exploit the optimum discretisation features of such an approach on

3D turbomachinery passages. LEVMAP and ALiNNS were used to predict the

unsteady pressure fluctuations, due to relative blade rotation, on a typical HP

turbine stage. The analysis was carried out using both linearised and non-linear

aerodynamics. Comparisons with experimental data were made in order to assess

the validity and the range of applicability of the linear method.

The main objectives of the research project can be summarised as follow:

• The development of a semi-structured mesh generator for an efficient repre-

sentation of 3D turbomachinery blades.

• The development of an efficient viscous flux discretisation algorithm for mixed

element grids and of a preconditioned agglomeration multigrid for efficient

time integration.

• The development of a 3D linearised viscous unsteady flow model.

• The application of the developed non-linear and linearised flow models to a

representative case in order to asses the applicability bounds of the linearised

methodology.

1.5 Contributions of the Thesis

1.5.1 CFD methods

The main contributions are summarised below.

Semi-structured meshes. The discretisation methodology uses a combination

of structured and unstructured meshes, the former in the radial direction and

the latter in the axial and tangential directions in order to exploit the fact that

blade-like structures are not strongly 3D since the radial variation is usually small.

Such a formulation was found to have a number of advantages over its structured
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counterparts. There is a significant improvement in the smoothness of the grid-

spacing and in capturing particular aspects of the blade passage geometry. It was

also found that the leading- and trailing-edge regions could be discretised without

generating superfluous points in the far field and that further refinements of the

mesh to capture wake and shock effects were relatively easy to implement. The

methodology is reported by Sbardella at al. (1997, 2000) and Sbardella (1998). A

detailed description is given in Chapter 2.

Hybrid-grid flow-solver. Compared with their structured counterparts, stan-

dard unstructured grid solvers have lower computational efficiency in terms of speed

and storage. Unstructured grids often use tetrahedral elements only, an approach

which often leads to numerical problems when the region to be discretised has a

preferred direction such as the boundary layer for a high-Reynolds number flow.

However, there are no fundamental difficulties in extending tetrahedral meshes to

include further element types such as triangular prisms, pentahedra and hexahe-

dra. Although both the discretisation of the computational domain and the flow

solver will become more complex, such a mixed-element approach will offer a better,

more efficient approximation than using tetrahedral elements only. For instance,

hexahedral elements will handle boundary layer flows much better than tetrahedral

elements because they can be made very slender without creating excessively small

or large internal angles. In order to handle mixed-element meshes, the spatial dis-

cretisation of the governing equations needs to be formulated in such a way that

the numerical algorithms can be applied in a uniform way to all element types.

Chapter 3 describes the development and application of a finite volume scheme

for the solution of the Favre-averaged Navier-Stokes equations on mixed-element

grids, consisting of triangles and quadrilaterals in 2D, and of tetrahedra, pyramids,

triangular prisms and hexahedra in 3D. Some of the findings have already been

reported in Sayma et al. (2000).

Edge-data Laplacian weight. A novel feature of the spatial discretisation em-

ployed in the ALiNNS flow solver is the use of a edge-data based Laplacian weight.

This Laplacian weight is used to compute the Laplacian terms of the viscous fluxes

and it results in a nearest neighbour stencils. Chapter 3 describes how to eval-

uate the Laplacian weight for mixed-element meshes using an approximation of

the Galerkin finite volume node-pair formula. The findings are also reported in
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Sbardella & Imregun (1999, 2000).

Preconditioned Multigrid. A preconditioned directional-implicit agglomera-

tion multigrid method has been developed for the solution of the linear and non-

linear Navier-Stokes equations on highly anisotropic 2D and 3D unstructured hy-

brid grids. The coarse grid levels are constructed automatically from the fine

grid by agglomerating fine grid control volumes together. Since the coarse grid

control volumes may have arbitrary polygonal shapes, the type of elements con-

stituting the fine grid is irrelevant. The discrete equations on coarse grid levels

are assembled automatically without the explicit creation of a coarse grid. The

multigrid smoother consists of a preconditioned point- or line-Jacobi Runge-Kutta

relaxation algorithm, which guarantees efficient damping of high-frequency error

modes on highly stretched grids. Appendix D gives a literature review of precon-

ditioned multigrid methods and describes the actual multigrid algorithm that is

implemented in ALiNNS.

1.5.2 Understanding of unsteady flows

Chapter 5 presents a detailed numerical analysis of a stator-rotor interaction in the

case of typical HP turbine stage using both linear and non linear unsteady flow

representations. The main contributions are summarised below.

• Detailed analysis of the rotor steady-state flow with discussion of secondary

and tip leakage flow.

• Calculation of the aerodynamic forcing functions from the stator outlet steady-

state solution. These forcing functions are obtained splitting the non-linear

steady-state flow into potential and vortical components using the theory

reported in Appendix C.

• Analysis of the distinct influence of potential and vortical forcing functions

on the rotor unsteady aerodynamics using a time-linearised approach.

• Assessment of the predicted results by comparing them with experimental

data and predicted non-linear results.
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Figure 1.1: Campbell diagram for a rotor blade (from Sisto 1987). x non-
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Figure 1.3: Turbine stage with different number of blades in each row



1.5- Contributions of the thesis 29

Figure 1.4: Three blade rows computational mesh for a 11 struts, 33 VIGVs and

36 rotor blades (from Sayma et al. 1999)



Chapter 2

Semi-structured Mesh Generator

for Turbomachinery Blades

This chapter describes the development of a novel mesh generator for the flow

analysis of turbomachinery blades. The proposed method uses a combination of

structured and unstructured meshes, the former in the radial direction and the

latter in the axial and tangential directions in order to exploit the fact that blade-

like structures are not strongly 3D since the radial variation is usually small. The

proposed semi-structured mesh formulation was found to have a number of advan-

tages over its structured counterparts. There is a significant improvement in the

smoothness of the grid-spacing and in capturing particular aspects of the blade

passage geometry. It was also found that the leading- and trailing-edge regions

could be discretised without generating superfluous points in the far field and that

further refinements of the mesh to capture wake and shock effects were relatively

easy to implement.

2.1 Introduction

It is well known that the grid structure must be selected carefully in order to achieve

an accurate resolution of complex flow fields typical of axial-flow turbomachines.

The minimization of skewness and the optimization of smoothness generally result

in a faster convergence as well as less solution dependence on the grid density,

therefore reducing computational cost both in terms of memory and CPU time.

As a consequence, the grid generation procedure should be considered an integral

30
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part of the numerical method.

When performing a numerical simulation of turbulent-viscous flow in turboma-

chinery passage, the following aspects are of importance: i) accurate leading- and

trailing-edge flow descriptions, ii) wake resolution, iii) proper gridding in the throat

area where most of the shock is expected to occur, and iv) imposition of periodicity.

Historically, mesh generation techniques for turbomachinery blades use structured

hexahedral representations, the most commonly used ones being H-type, C-type,

and O-type. These meshes are obtained either by using an algebraic approach

(Kallinderis & Ward 1992) or by solving a system of elliptic partial differential

equations (Thompson et al. 1974, Steger & Sorenson 1979, Brackbill & Saltzman

1982) or by solving hyperbolic partial differential equations (Steger & Chaussee

1980). H-type meshes have been by far the most common choice in turbomachinery

applications as they are very easy to generate, the imposition of periodicity is

straightforward and the mesh density before, inside, and after the blade passage

can be easily controlled. However, the leading- and trailing-edge descriptions are

poor and a large amount of superfluous points is generated in the region between

the inflow and the leading-edge. A classical H-mesh for a transonic blade is shown

in Fig. 2.1. O-type grids are not very effective in capturing the wake and their

Figure 2.1: Typical structured H-mesh for a fan blade geometry

quality outside the passage is very poor. This can smear the bow shock away from

the leading edge of a transonic compressor or the outgoing shock of a transonic

turbine blade. On the other hand, C-type meshes can capture the wake structure
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if they are carefully generated but their quality in the region between the inflow

and the leading-edge is not suitable to resolve bow shock accurately.

A different approach is to use unstructured triangular meshes for 2D turbomachin-

ery calculations. Fully unstructured grids offer good flexibility and most of the flow

features can be captured with good accuracy via mesh refinement. 3D unstructured

meshes are widely used in external aerodynamics but they have rarely been applied

to turbomachinery cases. The main difficulty associated with such meshes is their

isotropic nature. The very fact that tetrahedral unstructured meshes do not exhibit

any preferred direction is what makes them ideal for discretising arbitrarily complex

configurations. In fact most of the unstructured mesh generation techniques rely

on this property. However, when a configuration with a preferred direction, such as

a turbomachinery blade, is to be discretised, and different resolutions are desired

in the various directions, unstructured mesh generation techniques are known to

experience great difficulties in meeting such requirements. Turbomachine blades

require high resolution near their leading and trailing edges and radial spacing can

be relatively coarse. When using an isotropic unstructured mesh, the high leading

and trailing edge resolution requirements also result in a high radial resolution in

these areas, a feature greatly increases the number of grid points. Such a degree of

radial resolution is superfluous, since the radial gradients are known to be relatively

small for turbomachinery blade flows. Similar difficulties occur in the boundary

layer regions near a wall for high Reynolds number viscous flows, where the normal

gradients are several orders of magnitude grater than the stream-wise gradients.

To illustrate the unsuitability of unstructured meshes for such applications, a fully

unstructured mesh was created for fan blade geometry using an advancing front

technique (Morgan et al. 1992), the suction side being shown in Fig. 2.2. It is

Figure 2.2: Fully unstructured mesh on suction surface
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clearly seen that a large number of points are needed in the leading edge area in or-

der to satisfy the resolution requirements, a feature which creates an unacceptably

high overhead in the total number of points. It should also be noted that, for this

particular geometry, the generation of an efficient viscous mesh will be very difficult

using a totally unstructured grid because of the boundary layer considerations.

The considerations above lead to the use of semi-structured meshes for turboma-

chinery blades. The aim of this chapter is to present a novel approach for discretis-

ing turbomachinery blades by using a combination of structured and unstructured

meshes, the former in the radial direction and the latter in the axial and tangen-

tial directions. The basic idea relies on the fact that blade-like structures are not

strongly 3D since the radial variation is usually small. It is therefore possible to

start with a structured and body-fitted 2D O-grid around a given aerofoil section

to resolve the boundary layer. This core mesh is then extended in an unstructured

fashion up to the far-field boundaries, the triangulation being performed using an

advancing front technique (Morgan et al. 1992, Mavriplis 1995b). Once this 2D

grid is generated, it is projected to the remaining radial sections via quasi-conformal

mapping techniques. When all such radial sections are formed, a 3D prismatic grid

is obtained by simply connecting the corresponding points of different layers. In

this way, hexahedral elements are generated in the viscous region and triangular

prisms in the rest of the solution domain. Again, such an approach presents a

distinct advantage over totally unstructured grids which are usually confined to

tetrahedral elements only, though this limitation is usually a consequence of the

unavailability of general viscous mesh generators.

2.2 Generation of Prismatic Grid

The Section is focused on the proposed semi-unstructured mesh generator which

has six main stages:

• Projection of all radial levels, which define the blade geometry, into 2D para-

metric planes, using local coordinates.

• Generation of a 2D unstructured hybrid-mesh for a given projected radial

level, the so-called master plane.

• Generation of a coarse body-fitted structured mesh for all projected radial
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levels, including the master plane.

• Inverse mapping of the unstructured hybrid-mesh into the structured one in

the master plane.

• Direct mapping to obtain the final unstructured mesh at all radial levels.

• Inverse projection of all unstructured meshes into the original 3D radial levels.

• Generation of 3D prismatic grid by connecting the corresponding points at

consecutive radial levels.

2.2.1 Geometry modelling

. Turbomachinery blade geometry is usually defined at a number of radial levels.

In the general case, these radial levels will lie on 3D surfaces σi(x, r, θ), where i

indicates the section index, and r, θ are the polar coordinates. Using parametric

coordinates u and v, a typical surface can be defined as:

σi(x, r, θ) =


xσ = x(u, v)

rσ = r(u, v)

θσ = θ(u, v)

(2.1)

The starting point of the present method is the projection of the radial sections into

parametric 2D planes, using the local coordinate system u and v. In this way, the

mesh-generation procedure will deal with plane sections only, thus the geometric

dimension is reduced from three to two. Fig. 2.3 shows four different radial levels

for a typical nozzle guide vane from a well-known aeroengine manufacturer. In this

example σi(x, r, θ) is a surface of revolution around the x-axis, i.e. rσ = r (x). The

parametric coordinates u and v are defined as:

u =
∫

x

x0

r (s) ds (2.2)

v = r (x) θ (2.3)

Fig. 2.4 shows the projection of the four radial levels shown in Fig. 2.3.
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Figure 2.3: Geometry definition of an NGV blade at different radial levels
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Figure 2.4: Parametric 2D planes for four different radial levels

2.2.2 Unstructured mesh generation

Once all radial sections are projected into 2D planes, a hybrid quadrilateral-

triangular mesh is generated in the 2D master plane which corresponds to a certain

radial level (usually the middle one). The quadrilateral part of the mesh takes the

form of a body-fitted O-grid which is generated using an advancing normal method.

The orthogonality of this structured mesh is very important for an accurate reso-

lution of the turbulent-boundary layer which originates from high Reynolds num-

ber flows. This point will be stressed further in the next chapter where a novel

finite-volume discretisation of the Navier-Stokes equations on hybrid grids will be
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explored. The remaining part of the domain is discretised using an unstructured

mesh generator which uses an advancing front algorithm (Morgan et al. 1992,

Mavriplis 1995b). A distinctive feature of this method is that both triangles and

points are generated simultaneously. Such an approach enables the generation of

elements with variable sizes and stretching, and hence it differs from Delaunay-type

mesh generators (Baker 1990, Mavriplis 1995b).

Fig. 2.5b shows the final unstructured hybrid-grid of the NGV in Fig. 2.3 in the

2D master plane which, in this case, corresponds to the projected middle section

of the 3D blade.

2.2.3 Quasi-conformal mapping

An important part of the mesh-generation strategy is the mapping procedure to

project the 2D unstructured mesh of the master plane back to all radial blade-

definition levels. A necessary condition for a mapping function is that it must

associate a given point of the master plane with one, and only one, point of the

target plane. Moreover a mapping function should also guarantee that a given

angle in the master plane is mapped into a similar-valued angle in the target plane

(quasi-conformal mapping). This last property is essential in order to minimize the

skewness of the mesh, especially for highly-twisted blades.

The starting point for the quasi-conformal mapping is the generation of coarse

structured quadrilateral grids for all projected radial levels, including the master

plane. Following the approach of Steger & Sorenson (1979), these meshes are

obtained by solving a system of elliptic partial-differential equations. An essential

requirement for such structured meshes is that they must be generated in exactly

the same manner, i.e. with the same number of points and quadrilaterals for all

radial levels. Fig. 2.5 shows the structured quadrilateral grid and the unstructured

hybrid-grid in the master plane, which correspond to the middle radial section.

The mapping procedure is divided into three different steps.

Geometry searching in the master plane. Each point J of the unstructured

2D mesh in Fig 2.5b must be located on quadrilateral E of the structured mesh in

Fig 2.5a.
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(a) Structured mesh for mapping (b) Unstructured mesh

Figure 2.5: Meshes in the master plane

Inverse mapping in the master plane. The Cartesian coordinates x⃗J =

(xJ , yJ) of point J , associated with the quadrilateral E are given by

x⃗J =
4∑

I=1

x⃗INI (ξJ , ηJ) (2.4)

where (ξJ , ηJ) represent the local-coordinates, x⃗I represents the Cartesian coordi-

nates of nodes I = 1, . . . , 4 of the quadrilateral E and NI is the standard finite-

element bilinear shape-function which takes the form (Zienkiewicz & Morgan 1983):

NI =
1

4



(1− ξ) (1− η)

(1 + ξ) (1− η)

(1 + ξ) (1 + η)

(1− ξ) (1 + η)

(2.5)

A Newton-Raphson method is used in order to obtain the values of ξJ and ηJ .

Direct mapping. Once all points J of the unstructured mesh in the master plane

are associated with quadrilateral E and local-coordinates (ξJ , ηJ) are determined,
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coordinates x⃗J of points on the remaining projected radial sections are obtained

directly using equation (2.4).

The above-described steps are shown in Fig. 2.6. The mapping method becomes

fully conformal if (i) a given element of the 2D hybrid mesh lies within a single

quadrilateral of the structured grid. (ii) In addition, the angles of this quadrilateral

must remain the same for all radial sections. If the above two conditions are

not satisfied, the conformal property is not guaranteed and, for this reason, the

procedure has been labelled quasi-conformal here. Finally, it is worth noting that

the algorithm is not CPU-intensive, since the geometry searching and the inverse-

mapping are performed once only.

Fig. 2.7 shows the structured meshes used for mapping and the corresponding

mapped unstructured hybrid-grids at three radial levels. Once the unstructured

mesh has been mapped to all radial blade surfaces, a prismatic mesh is obtained

by simply connecting the corresponding points at consecutive levels. Moreover,

in order to enhance the quality of the 3D mesh, a smoothing procedure is per-

formed. This operation alters the positions of the interior nodes without changing

the topology of the mesh. The element sides are considered as springs of stiffness

proportional to the length of the side. The nodes are moved until the spring system

is in equilibrium, the position of which is found by Jacobi iterations.

2.3 The Program LEVMAP

The semi-structured mesh generation technique proposed in this Chapter has been

implemented in the program LEVMAP (LEVel MAPping) written in Fortran 90.

The LEVMAP program became a standard facility not only at the Vibration Centre

but also at major aeroengine manifacturer. It is now used by many researchers and

engineers for aerolasticity calculations on turbomachinery blades. A user’s guide

is available for the second release of the program (Sbardella 1998). Grosclaude

et al. (1999) extended LEVMAP to radial-flow turbomachine blades by modify-

ing the 3D to 2D projection of Section 2.2.1. An example of a semi-structured

mesh for a radial turbomachinery assembly is shown in Fig. 2.8. Further improve-

ments of LEVMAP include automatic meshing of fan assembly + intake-duct,

non-axisymmetric hub and tip, hub gap and snubber blades. Fig. 2.9 shows an

exemple of semi-unstructured mesh for a snubbered fan blade assembly.
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2.4 Concluding Remarks

A method to generate semi-structured prismatic meshes for turbomachinery blades

has been presented. The unstructured mesh in the axial and tangential directions

offers more flexibility than standard structured H-type, O-type and C-type meshes,

both in terms of skewness minimization and smoothness optimization. The use of

fully unstructured viscous meshes for blade like geometries is likely to require a

much larger number of grid points and hence there are distinct advantages in using

semi-structured meshes. Such was the success of the method that it was adopted

by a major aeroengine manifacturer within one year of it being available.
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Figure 2.6: Mapping procedure
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(a) Hub section

(b) Middle section

(c) Tip section

Figure 2.7: Structured meshes for mapping and corresponding mapped unstruc-

tured meshes at three radial levels
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Figure 2.8: Semi-structured mesh for a radial-flow turbomachine
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Figure 2.9: Semi-structured mesh for a snubbered fan assembly



Chapter 3

Hybrid Grid Solver for Turbulent

Viscous Flow

This chapter presents a method for solving steady and unsteady, compressible,

turbulent viscous flows for 2D and 3D turbomachinery blades. The flow model is

based on the Favre-averaged Navier-Stokes equations, together with a one equa-

tion turbulence model. The space discretisation uses a node-centered finite volume

scheme on unstructured mixed element grids, consisting of triangles and quadrilat-

erals in 2D, and of tetrahedra, pyramids, triangular prisms and hexahedra in 3D.

The important features of the present approach are the discretisation of the do-

main via a single, unified edge-data structure for mixed-element meshes and the use

of a Laplacian weight which results in nearest neighbour stencils. The Laplacian

weight is evaluated using an approximation of the Galerkin finite element method.

In order to allow a straightforward implementation of fluid-structure coupling, the

numerical solution is based on the Arbitrary Lagrangian-Eulerian method in which

the grid points may be moved in an arbitrary but specified way. The pseudo time

integration for steady-state problems is obtained using a preconditioned agglomera-

tion multigrid method designed for highly anisotropic unstructured hybrid grids. In

order to use the same preconditioned multigrid algorthim employed in the steady-

state cases, a dual time-stepping technique is used for unsteady computations.

45
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3.1 Introduction

Over the last decade, significant advances have been made in the area of turbulent-

viscous simulations using unstructured grids. However, compared with their struc-

tured counterparts, standard unstructured grid solvers have lower computational

efficiency in terms of speed and storage. Unstructured grids often use tetrahe-

dral elements only, an approach which often leads to numerical problems when

the region to be discretised has a preferred direction such as the boundary layer

for a high-Reynolds number flow. However, there are no fundamental difficul-

ties in extending tetrahedral meshes to include further element types such as tri-

angular prisms, pentahedra and hexahedra. Although both the discretisation of

the computational domain and the flow solver will become more complex, such

a mixed-element approach will offer a better, more efficient approximation than

using tetrahedral elements only. For instance, hexahedral elements will handle

boundary layer flows much better than tetrahedral elements because they can be

made very slender without creating excessively small internal angles. In order to

handle mixed-element meshes, the spatial discretisation of the governing equations

needs to be formulated in such a way that the numerical algorithms can be applied

in a uniform way to all element types. A relatively simple way of achieving such

consistent numerical treatment is to employ an edge-based data structure, which

can be obtained from either a finite volume (FV) or a finite element (FE) formu-

lation if the mesh consists of tetrehedral elements only. In this particular case,

all nodes are connected directly without any internal diagonals. However, quadri-

laterals in 2D and hexahedrals in 3D have not only edges but also diagonal links.

Therefore, to create an edge-based data structure from mixed meshes, one cannot

use a FE technique because of the non-zero shape function contributions from the

diagonally-opposed nodes for which there are no direct edges. Consequently, we

will use a FV technique to obtain an edge-based data structure from mixed element

meshes but, as reported by Barth (1990), Parthasarathy et al. (1995), Mavriplis &

Venkatakrishnan (1995a) for unstructured meshes of tetrahedra, the discretisation

of the viscous terms, remains a major problem. The FV edge-based data structure

is usually obtained by discretising the viscous terms in two sequential loops, the

so-called two-loop approach. The first loop is used to construct the gradients at all

points, and the second one forms the second derivatives from the computed gradient

information. Using such a technique, the viscous fluxes are treated in an analogous
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manner to the inviscid ones and no extra storage is required. However, this strat-

egy, used by several authors (see Peraire et al. 1992, Vahdati & Imregun 1995)

has at least three serious drawbacks. First, the odd-even decoupling can destabilize

the numerical scheme in regions where the viscous effects are important, e.g. the

boundary layer. Second, for a 1D mesh of spacing h, the scheme will reduce to a

second difference on a stencil of 2h, a feature which will lower numerical accuracy.

Since packing enough points into the viscous layer is one of the main difficulties

associated with viscous flow computations, a scheme that operates on every other

point is highly undesirable. The third problem is the difficulty of implementing a

viscous Jacobian which becomes important if an implicit time integration scheme

is employed.

An alternative approach, based on Galerkin finite element (GFE) approximation

where velocity and temperature are made dependent variables, is the derivation of

the six node-pair coefficients for the Hessian matrix (Mavriplis 1995a, Selmin &

Formaggia 1996). Each coefficient is associated with two nodes only, hence the term

”node-pair GFE”. As mentioned earlier, such a formulation is not edge-based for

non-tetrehedral meshes because of the possible diagonal links between the nodes

of a hexahedral element. On the other hand, the final discrete viscous terms of

such a GFE formulation form a nearest neighbour stencil. Therefore, using the

Hessian node-pair coefficients, six second derivatives can be calculated for each

node. Since the viscous terms can be expressed as a summation of the product of

the node-pair coefficients and the unknowns, the construction of a viscous Jacobian

becomes straightforward by explicit differentiation. Furthermore, the odd-even

decoupling is avoided and the accuracy is improved. Unfortunately, this approach

needs additional storage for the six node-pair coefficients and its applicability is

restricted to triangular/tetrahedral elements if an edge-based data structure needs

be employed.

In summary, when dealing with mixed-element meshes, FV formulations can yield

edge-based data structures but viscous flux discretisation remains problematic. On

the other hand, GFE formulations are more efficient but the edge-based data struc-

ture cannot be preserved for non tetrahedral elements. Therefore, the discretisation

of the viscous fluxes can be improved by combining the storage efficiency of the

two-loop FV approach with the numerical efficiency of the node-pair GFE method

in an edge-based FV framework.
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3.2 Favre Averaged Navier-Stokes Equations

The system of Navier-Stokes equations constitute the most complete description

of viscous, heat-conducting flows and represents the highest level of approxima-

tion for continuous fluids. However, from the point of view of computational fluid

dynamics, the vast majority of flow situations occurring in engineering applica-

tions enter into a particular form of instability, called turbulence. This occurs in

most flow situations when the inertial forces exceed the viscous forces by more

than four orders of magnitude (the ratio of these two forces is called Reynolds

number). This form of instability can be represented by statistical fluctuations of

the flow quantities around mean or averaged values. Moreover, the space scale of

these fluctuations is so small that their direct calculation is beyond the reach of

computational capabilities for engineering applications.

Therefore, time-averaged Navier-Stokes equations need to be considered in most

situations. In the case of compressible flow equations, this averaging is called

Favre averaging (Wilcox 1993). Because of the non-linearity of the Navier-Stokes

equations, this procedure generates additional unknowns which will be solved using

a suitable turbulence model. In this work, the Spalart Allmaras (1992) one equation

turbulence model has been used (Appendix B).

3.2.1 Mean flow equations

The unsteady, compressible, Favre-averaged Navier-Stokes equations for a blade

row in 3D can be cast in terms of absolute velocity v⃗ but solved in a relative non-

Newtonian reference frame rotating along with the blade about the x axis with

angular velocity Ω as shown in Fig. 3.1. This system of equations, written in

a dimensionless, Arbitrary Lagrangian-Eulerian (ALE), integral conservative form

(Donea et al. 1982) for a control volume V (t) with boundary S (t) in Cartesian

coordinates x⃗ = (x, y, z), takes the form

∂

∂t

∫
V(t)

UdV +
∮
S(t)

[
F⃗ (U, u⃗)− 1

Re
G⃗ (U,∇U)

]
· n⃗ dS =

∫
V(t)

S dV (3.1)

The viscous term G⃗ on the left-hand side of (3.1) is scaled by the reference Reynolds

number so that flow variables are non-dimensionalised consistently. The dimension-

less quantities are evaluated from their dimensional counterparts using the dimen-

sional reference values reported in Appendix A. n⃗ represents the outward unit
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Figure 3.1: Direction of blade rotation

vector of the control volume boundary S (t). The vector u⃗, which represents the

velocity in the relative frame of reference minus the velocity dx⃗
dt

of the boundary

S (t), can be written as:

u⃗ = v⃗ − Ω⃗× x⃗− dx⃗

dt
(3.2)

where Ω⃗ = (−Ω, 0, 0). The sign of the angular velocity vector is determined by the

assumption that the positive rotational speed is the one indicated in Fig. 3.1. The

solution vector of conservative variables U is given by:

U =
[
ρ ρv1 ρv2 ρv3 ρE

]T
(3.3)

The inviscid flux vector F⃗ (U, u⃗) has the following components1:

Fj = Uuj + Fpj (3.4)

Fpj =
[
0 pδ1j pδ2j pδ3j vjp

]T
(3.5)

where δij represents the Kronecker delta function. The static pressure p and the

total energy E are related, in a non-dimensional fashion, to the density ρ, absolute

1Uuj represents the j component of the convective flux, while Fpj represents the j component

of the pressure flux.
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velocity v⃗ and total enthalpyH by the following two equations which assume perfect

gas with a constant ratio γ of specific heat.

p = (γ − 1) ρ

[
E − |v⃗|2

2

]
, H = E +

p

ρ
(3.6)

Following the approach of Sbardella & Imregun (1999, 2000), the viscous part of

the governing equations is split into two distinct components, namely:

G⃗ = G⃗l + G⃗m (3.7)

where

G⃗l =



0

µ∇⃗v1

µ∇⃗v2

µ∇⃗v3

µ
∑

3

j = 1 vj∇⃗vj +
γ

γ−1

(
µl

Prl
+ µt

Prt

)
∇⃗T


(3.8)

T = p/ρ is the non-dimensional static temperature of the fluid. The j-component

of the second term on the left-hand side of (3.7) is:

Gmj =



0

µ ∂vj
∂x1

+
(
λ∇⃗ · v⃗

)
δ1j

µ ∂vj
∂x2

+
(
λ∇⃗ · v⃗

)
δ2j

µ ∂vj
∂x3

+
(
λ∇⃗ · v⃗

)
δ3j

µ
(
v⃗ · ∇⃗vj

)
+ λvj

(
∇⃗ · v⃗

)


(3.9)

In (3.8) and (3.9), µ represents the total dynamic viscosity of the fluid and is given

by the summation of the laminar (physical) dynamic viscosity µl and the turbulent

dynamic viscosity µt. The value of λ is given by the Stokes relation λ = −2
3
µ

which is valid for the majority of the flow situations with the exception of very high

temperature or pressure ranges. It is easily seen that the component G⃗l in (3.8)

includes the Laplacian operators of the three velocity components and temperature

only. The second component, G⃗m, contains the mixed derivative terms, while the
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vector of source terms S on the right-hand side of (3.1) takes into accounts for the

blade rotation

S =
[
0 0 ρΩv3 −ρΩv2 0

]T
(3.10)

The derivation of the constitutive relations of viscous flows is discussed in detail

by Schlichting (1979) and White (1991).

3.2.2 Boundary conditions

For convection dominated phenomena, such as those described by the compress-

ible Navier-Stokes equations, the formulation of correct boundary conditions is

extremely important and its impact on the numerical scheme is often dominating.

The reason for this strong influence can be traced back to the physical nature

of the convection propagation phenomena (Hirsh 1990). If all the variables were

known at a boundary from the knowledge of the physical input, there would be no

difficulty; however this is generally not the case with hyperbolic systems of partial

differential equations. The number of physical variables that can be freely imposed

at a boundary is dependent on the propagation properties of the system and, in

particular, on the information propagated from the boundary towards the inside

of the flow region. These are known as physical boundary conditions. The remaing

variables will depend on the details of the flow and are, therefore, part of the so-

lution. However from a numerical point of view, information about all variables

is required at the boundary. This additional information gives rise to numerical

boundary conditions (Hirsch 1990).

The presence of viscosity and heat conduction transforms the conservation laws of

momentum and energy into second-order partial differential equations. The system

of Navier Stokes equations is therefore an hybrid system consisting of parabolic

momentum and energy equations and of a hyperbolic continuity equation. A direct

consequence is the need for a greater number of physical boundary conditions when

dealing with viscous flows instead of inviscid flows.

Flow-tangency. Also known as the inviscid wall condition, this boundary con-

dition at the solid walls is expressed by the requirement that there is no flow

through the surface of the moving wall. Only one physical boundary condition can
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be imposed at this boundary because only the forward travelling acoustic wave is

entering the domain. Mathematically, this condition is expressed by the vanishing

of the velocity normal to the wall.

u⃗ · n⃗ = 0 (3.11)

Expressed in a week sense, i.e. through the fluxes, (3.11) becomes:

∮
wall

F⃗dS =
∮
wall

F⃗pdS =



0

p n1dS
p n2dS
p n3dS

p
(
Ω⃗× x⃗+ dx⃗

dt

)
· n⃗dS


(3.12)

No-slip condition. The no-slip condition at the solid walls is expressed by the

requirement that the fluid velocity relative to the moving wall must be zero. Math-

ematically this can be expressed as:

u⃗ = v⃗ − Ω⃗× x⃗− dx⃗

dt
= 0 (3.13)

In addition to (3.13), an additional information is required due to the presence of

the second derivative terms in the Navier-Stokes equations2. Here this additional

information is for an adiabatic wall

n⃗ · ∇⃗T = 0 (3.14)

Inflow and outflow boundaries. The quasi-3D non-reflecting boundary con-

ditions developed by Saxer & Giles (1993) are used for steady-state computations.

These boundary conditions are obtained from a Fourier mode analysis of the lin-

earised Euler equations at the far-field boundaries. Implemented in a turbomachin-

ery environment, the approach assumes that the solution at the boundary is cir-

cumferentially decomposed into Fourier modes, the 0th mode corresponding to the

averaged solution. The 0th mode is treated according to the standard 1D boundary

2The no-slip condition is valid for viscous flow only.
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condition (Thompson 1987, 1990) which allows the user to specify certain physical

quantities at the boundaries. Such averaged quantities are:

• Inflow: stagnation temperature, stagnation pressure and flow angles.

• Outflow: static pressure.

The remaining part of the solution, represented by the sum of the harmonics,

is treated according to the exact3 2D theory of Giles (1988, 1990a). Since this

method considers radial flow variations in the 0th mode only, it is called quasi-3D

non-reflecting boundary conditions. In the absence of any radial variations, the

boundary conditions are exact within the 2D linear theory.

The standard 1D characteristic boundary conditions of Thompson (1987, 1990) are

used for unsteady time-marching aerodynamics.

Periodic boundaries. Taking advantage of the edge-based data structure, the

periodicity is handled in a straightforward way as long as the points in the two

periodic boundaries are located at same axial and radial coordinates.

Uθ0+∆θ = Uθ0 (3.15)

3.3 Spatial Discretisation

The development of a FV edge-based data structure for unstructured mixed-element

meshes will now be described in detail.

As shown for the 2D mesh of Fig. 3.2, using a node-centered approach and choosing

the median dual mesh as control volume4, a FV discretisation of (3.1), written in

a semi-discrete form, is given by:

∂ (VIUI)

∂t
= −

mI∑
s = 1

[|η⃗IJs| (FIJs−GmIJs)− τIJsGlIJs] + VISI (3.16)

As shown in Fig. 3.2, node I is connected by edges to mI (mI = 6 in Fig. 3.2)

nodes Js, VI representing the control volume associated with it. F , Gm and Gl cor-

respond to the inviscid and viscous vectors F⃗, G⃗m and G⃗l. η⃗IJs is the metric vector

3The term exact refers to the solution of the linear problem. Since the linear problem is itself

an approximation to the nonlinear one, there will be errors which are proportional to the square

of the amplitude of the non-uniformities at the far-field boundaries.
4A discussion of different control volume definitions is given by Barth & Jespersen 1989.
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Figure 3.2: Control volume for node I and metric vector η⃗IJs for edge IJs

associated with the surface area of edge IJs while τIJs represents the Laplacian

weight associated with the same edge. The summation in (3.16) has been obtained

applying the Green’s formula to the surface integral of (3.1) and choosing as path

the median dual mesh (Barth & Jespersen 1989, Barth 1991). Of particular inter-

est here is the use of the GFE node-pair formula for the Laplacian operator τIJs in

order to construct an approximate version for the FV edge-data scheme (Sbardella

& Imregun 1999, 2000).

3.3.1 Inviscid discretisation

The discretisation of the inviscid flow terms in (3.16) is given by:

mI∑
s = 1

|η⃗IJs| FIJs (3.17)

where FIJs represents the inviscid flux function along edge IJs which is obtained

using a central difference scheme with added matrix artificial dissipation. This
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artificial dissipation is a blend of second and fourth order differences. The fourth

order terms ensure the stability of the scheme in smooth regions of the flow, while

the second order terms are required to damp numerical oscillations in the vicinity

of discontinuities. The inviscid flux function is expressed as:

FIJs =
F⃗I + F⃗Js

2
· η⃗IJs

|η⃗IJs|
− DIJs (3.18)

where the artificial dissipation DIJs along the edge is given by:

DIJs =
1

2
|AIJs| [ψ∆U− ϵ4 (1− ψ)∆L (U)] (3.19)

Here ∆ represents the difference operator along edge IJs

∆(·) = (·)
Js
− (·)

I
(3.20)

|AIJs| is the standard Roe matrix (Roe 1981) between the two stages UI and UJs,

ϵ4 ≈ 1/16 is the fourth order artificial dissipation coefficient. LI (U) is a pseudo-

Laplacian operator, at node I, given by:

LI (U) =

(
mI∑

s = 1

UJs −UI

sIJs

)(
mI∑

s = 1

1

sIJs

)−1

(3.21)

where

sIJs = |x⃗Js − x⃗I| (3.22)

ψ represents the limiter function which varies between 0 and 1 and it is required in

order to switch the scheme to first order (ψ = 1) in the vicinity of discontinuities

(Jorgenson & Turkel 1993).

Evaluation of metric vector

The metric vector η⃗IJs is obtained via a summation of the two dual median lengths

around the edges, multiplied by their normals. For example the metric vector of

the edge connecting nodes I and Js is shown in Fig. 3.2 for a 2D mesh. Another
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way of calculating η⃗IJs is the use of the GFE scheme in a node-pair formulation

(Selmin & Formaggia 1996):

η⃗IJs =
∑

e∈IJs

∫
Ve

(
NI∇⃗NJs −NJs∇⃗NI

)
dV (3.23)

where e ∈ IJs indicates the set of elements which share nodes I and Js, and NI

is the test function of the GFE method. In the derivation of (3.23), no a-priori

assumptions were made regarding element types or the space dimensionality of the

flow. If the FE test function N is linear, both FV and GFE schemes will result

in the same neighbouring stencil on triangular and tetrahedral meshes. Since all

nearest neighbours are joined to the vertex under consideration by an edge, the

node-pair formulation of (3.23) is equivalent to an edge-based data structure (Bath

& Jespersen 1989, Selmin & Formaggia 1996). However, for quadrilaterals in 2D,

(a) Galerkin finite element (GFE) (b) Finite volume (FV)

Figure 3.3: Stencils for a quadrilateral mesh

and pyramids, wedges and hexahedra in 3D, the edge-data structure of a standard

FV discretisation is no longer equivalent to the node-pair formulation of the GFE

method. For example, in the case of a quadrilateral element, the GFE formulation

takes into account the diagonal links. This approach results in a 9-point stencil,

involving all corner points of the 4 quadrilaterals which share the vertex under
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consideration. On the other hand, the classical FV formulation considers the edge-

based links only, resulting in a 5-point stencil (Fig. 3.3). Similarly, for a hexahedral

element, the GFE method results in a 27-point stencil whereas the FV results in

a 9-point stencil. Consequently, the GFE method is more expensive than the

standard FV method but it has less dependence on mesh quality. For instance,

when a mesh of quadrilateral or hexahedral elements is not orthogonal, the FV

scheme still retains its conservation properties but its accuracy degenerates from

second to first order (Essers at al. 1995). For distorted meshes, the FV scheme

is unable to recover the correct gradient values for a linear field on such elements.

However, in the present formulation, the gradient information is used only for the

evaluation of the limiter ψ in (3.19). By adopting a suitable limiter function, as

that developed by Jorgenson & Turkel (1993), the FV scheme should retain its

overall second order accuracy.

Artificial dissipation and limiter function

Central-difference type schemes, such that in (3.18), are commonly used for the

solution of the Euler and Navier-Stokes equations. The artificial dissipation DIJs

in (3.19) plays a crucial role in the determination of the quality of the numeri-

cal method. One of the first central-difference schemes used the scalar artificial

dissipation model developed by Jameson et at. (1981). During the 1980s, a consid-

erable amount of research effort has been devoted towards the construction of more

sophisticated schemes by minimising the added artificial dissipation. The paper by

Swanson & Turkel (1992) summarises such effort and shows how central difference

schemes with matrix artificial dissipation, as that in (3.19), are related to upwind

schemes which utilize concepts from the characteristic theory in order to determine

the direction of spatial differencing (Roe 1981, Harten 1983b, Osher 1984, Pandolfi

1984, Roe 1986). In fact, scheme (3.18) with ψ = 1 is equivalent to the first-order

upwind scheme of Roe (1981). Also, upwind schemes can be designed to have the

TVD property in the case of scalar conservation laws (Harten 1983a, Osher 1984).

The TVD property is very useful in constructing limiter functions for second-order

numerical schemes (Sweby 1984). Swanson & Turkel (1992) introduced flux limiter

functions that are consistent with the central-difference dissipation models using

the TVD property.

The limiter function used here is a multidimensional extension of the modified,
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van Leer central difference limiter, proposed by Swanson & Turkel (1992). For an

equispaced 1D mesh, the limiter function at point I is defined as:

ψI =
|pI + 1 − 2pI + pI − 1|

(1− χ) (|pI + 1 − pI|+ |pI − pI − 1|) + χ (pI + 1 + 2pI + pI − 1)
(3.24)

where 0 ≤ χ ≤ 1. If χ = 0, ψI becomes the van Leer central difference TVD

limiter. If χ = 1, ψI is equivalent to that used by Jameson et al. (1981). For a 3D

mesh the limiter function associated with node I and side IJs becomes:

ψI|IJs
= 2

∣∣∣pJs − pI − ∇⃗pJs · s⃗IJs

∣∣∣
(1− χ)

(
|pJs − pI|+

∣∣∣pI − pJs + ∇⃗pJs · s⃗IJs

∣∣∣)+ 2χ (pJs + pI)
(3.25)

where s⃗IJs is given in (3.22). The final value of ψI is than given by the maximum

value of (3.25) of all sides IJs associated with node I:

ψI = max (ψI|IJs
) (3.26)

The central-difference scheme in (3.18) is slightly more dissipative than a second-

order upwind scheme and this is for two reasons. First ψI = max (ψI|IJs
), is multidi-

rectional, while ψI is usually chosen along a particular direction in upwind schemes.

Second, upwind limiters allow to have negative viscosity but still retaining the TVD

property while central-difference scheme cannot have negative artificial dissipation.

In any case, to compensate for this slight increase in dissipation, central-difference

schemes are simpler to program and require less computer time per time step, es-

pecially if used in conjunction with multistage time stepping techniques where the

artificial dissipation is evaluated at alternate stages (Appendix D).

3.3.2 Viscous discretisation

The viscous fluxes associated with the mixed derivatives in G⃗m of (3.9) are treated

in the same way as their inviscid counterparts and their contribution to (3.16) is

given by:

GmIJs =
1

Re

(
G⃗mI + G⃗mJs

)
· η⃗IJs

|ηIJs|
(3.27)
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Here, the Laplacian terms will be treated in a novel way in order to improve both

the accuracy and the robustness of the numerical scheme (Sbardella & Imregun

2000). In (3.16), these terms take the form:

GlIJs=
1
Re



0

µIJs∆v1

µIJs∆v2

µIJs∆v3

(µv⃗)
IJs

·∆v⃗ ++ γ
γ−1

(
µl

Prl
+ µl

Prt

)
IJs

∆T


(3.28)

The subscript IJs indicates an arithmetic mean over nodes I and Js:

(·)
IJs

=
(·)

Js
+ (·)

I

2
(3.29)

The difference operator ∆ in (3.28) is given in (3.20). In the present formulation,

that deals with mixed-element meshes, the Laplacian weight τIJs in (3.16) is eval-

uated using an approximation of the GFE node-pair relation. For a generic 2D or

3D element, the GFE Laplacian weight can be written as (Selmin & Formaggia

1996):

τIJs = −
∑

e ∈ IJs

∫
Ve

∇⃗NI · ∇⃗NJsdV (3.30)

As for (3.23), the Laplacian node-pair coefficient can be used for triangle/tetrahedral

elements only if the data structure is edge based. Equation (3.30) will now be ex-

tended to other types of elements so that an approximate Laplacian weight, that

is suitable for an edge-data FV implementation, can be evaluated. Let us consider

the quadrilateral element of Fig. 3.4 to illustrate such an approach. In (3.30), the

two integrals involving the diagonal links between nodes (I1 − I3) and (I2 − I4) are

not zero. Since the diagonal links are not present in the FV formulation, in the

present method their contribution is added to the edge links (I1 − I2), (I2 − I3),

(I3 − I4) and (I1 − I4). As sketched in Fig. 3.4, each diagonal link contributes by a

factor of 1/2 to the Laplacian operator of any of the four edges of the quadrilateral

element. An equivalent treatment is adopted for pyramids, wedges and hexahedra.

The integration of (3.30) is obtained using a one point Gauss quadrature for all type

of elements. If the mesh is orthogonal, this approach will recover the second-order

Laplacian weight of the GFE method.
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Figure 3.4: Contribution of diagonal links to Laplacian weight for a quadrilateral

mesh

3.4 Time Integration

After discretising the governing equations in space, the semi-discrete system of

coupled ordinary differential equations (ODE) in (3.16) is obtained. Such system

of coupled ODEs can be expressed in a compact form as:

d (VIUI)

dt
= RI (U) (3.31)

where RI represents the discretised form of the inviscid fluxes, viscous fluxes and

source terms at node I.

A preconditioned multigrid algorithm has been used as an iterative method for

calculating both steady-state solutions and unsteady time-marching solutions via

a fully implicit scheme.

3.4.1 Steady state algorithm

If a steady state solution is sought, time accuracy is not an issue and the time

integration can be seen as relaxation method towards steady-state. Equation (3.31)

is then written in the following form:
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[P]−1 LτδUI = RI (U) (3.32)

As discussed in Appendix D, Lτ represents a multistage Runge-Kutta operator

while [P]−1 represents a preconditioner developed for accelerating steady-state cal-

culations. δ indicate the change over a pseudo time step. Such a preconditioned

Runge-Kutta relaxation algorithm is used as a smoother in an agglomeration multi-

grid algorithm. The principle behind this algorithm is that errors associated with

high frequencies are damped by the smoother while the errors associated with the

low frequencies are damped on the coarser grids where these frequencies manifest

themselves as high frequencies.

A complete description of the algorithm is given in Appendix D.

3.4.2 Unsteady time-marching algorithm

A numerical scheme to solve time-marching unsteady aerodynamics is described.

The scheme is fully implicit and uses the same preconditioned multigrid algorithm

developed for steady-state predictions, in order to iteratively invert the equations

at each physical time step. The design objective of the method is unconditional

stability. This means that the choice of the time-step is based on the physical to be

resolved, rather then limited by numerical stability, which is particularly important

for meshes with large variations in size.

It has been demonstrated that A-stable schemes5 cannot have an order of accu-

racy higher then two (Jameson 1991). The trapezoidal scheme has the smallest

truncation error of all second order A-stable methods but it becomes undamped

for large time steps6. Consequently a second order implicit backward difference

scheme, which is A-stable and damped for ∆t → ∞, has been preferred for this

work.

A second order implicit backward time integration of (3.31) can be expressed as:

3 (VIUI)
n + 1 − 4 (VIUI)

n + (VIUI)
n − 1

2∆t
= RI (U

n + 1) (3.33)

where n denotes the physical time level. The implicit non-linear system of equa-

tions given by (3.33) needs to be solved every time-step. Indicating with Ul the lth

5An A-stable scheme is stable for all values of the time step of ∆t
6This can be demonstrated by performing a stability analysis of the 1D convection equation.
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approximation to Un + 1 and with δUI = Ul + 1 −Ul, an iterative equation is con-

structed, from (3.33), by simply adding a pseudo-time derivative term [P]−1 LτδUI

to the left-hand side.

[P]−1 LτδUI +
3VIδUI + 3 (VU)l

I
− 4 (VU)n

I
+ (VU)n − 1

I

2∆t
= RI (U

l) (3.34)

This expression can be written in a compact form, similar to (3.32), as:

[P]−1

imp
LτδUI = RIimp

(Ul) (3.35)

where [P]−1

imp
and RIimp

are given by

[P]−1

imp
= [P]−1 + 3

VI

2∆t
[I] (3.36)

RIimp
(Ul) = RI (U

l)− 3
VI

2∆t
Ul

I + En

I (3.37)

En
I involves the portion of the physical time derivative at previous time steps and

is invariant during the iteration process.

En

I =
4 (VU)n

I
− (VU)n − 1

I

2∆t
(3.38)

The preconditioner [P]−1

imp
on the left-hand side of (3.35) contains a portion of the

physical-time derivative as suggested by Melson at al. (1993) in order to produce

a stable numerical scheme for any choice of the physical time step ∆t.

In order to clarify this point, let us consider, for a moment, a scalar preconditioner,

also called local time step:

[P]−1 =
VI

σ∆τ
[I] (3.39)

where ∆τ is the local time step at node I, and σ represents the CFL number.

Substituting (3.39) into (3.36), one can obtain

[P]−1

imp
=

VI

σ∆τimp

[I] (3.40)

∆τimp =
∆τ

1 + 3
2
∆τ
∆t
σ

(3.41)
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From (3.41), it is apparent that the effect of the implicit treatment is to reduce the

time step in regions of the flow where the ratio of pseudo/physical time steps, ∆τ
∆t

becomes large. For low-frequency unsteady problems, accuracy constraints permit

a large physical time step ∆t, so that the time step ratio ∆τ
∆t

, is generally very

small throughout most of the computational domain, and the implicit treatment

plays a minimal role. However, near the far-field, large mesh cell will produce

correspondingly large pseudo-time stability limits, ∆τ , and the implicit treatment

becomes a useful mechanism to ensure stability.

3.5 Test Cases

The numerical procedure described up to now can be utilize to analyse steady and

unsteady flow at various levels of approximation. Obviously, the computational cost

in terms of CPU time and memory increases with the complexity of the modelling

from simple 2D steady flows to 3D unsteady multi-passage analyses. Four examples

of the code application to turbomachinery and external flow field prediction will

be presented in this Section along with discussion in order to show the capabilities

and limits of the procedure. The first example deals with the steady-state flow

prediction of turbomachinery flow for a 2D geometry. The remaining three test

cases illustrate the use of the dual-time-stepping code for predicting unsteady flows

for which analytical or experimental data is available in the literature.

For these computation the preconditioned agglomeration multigrid described in

Appendix D has been used. In the boundary layer, agglomerated grids are obtained

by coarsening in the normal direction with a fine-to-coarse cell ratio of 4:1. A line-

implicit Jacobi preconditioner has been used for all four test cases presented.

3.5.1 Steady flow over a turbine rotor blade

The calculations presented in this Section are for the 2D Von Karman Institute

gas turbine rotor blade (VKI LS59). This blade represents a challenging test for a

transonic flow solver and it has been used by several researchers for code validation

(Arnone and Swanson 1993). The flow is turned about 96o by the blade, with

an exit Mach number which varies from 0.81 up to 1.20. The blade passage is

convergent and originally designed to work up to sonic conditions. In fact, the

suction side is curved even after the throat region, which produces a strong trailing



3.5- Test cases 64

edge shock in transonic regimes. Kiock et al. (1986) provide the geometry and

detailed experimental data for this rotor blade.

Figure 3.5: VKI LS59 rotor blade. Computational mesh with zoom views at

leading- and trailing-edges

The inlet flow angle is 30o while the Reynolds number based on the blade chord

and outlet conditions is in the range from 6.2 · 105 up to 8.3 · 105. A view of the

computational mesh is shown in Fig. 3.5. This mesh contains 7,440 quadrilaterals

in the boundary layer region and 12,842 triangles in the rest of the domain which

yields a total of 14,203 points. Three succesively agglomerated meshes were used
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(a) Grid 2: 3587 cells (b) Grid 3: 908 cells (c) Grid 4: 239 cells

Figure 3.6: VKI LS59 rotor blade. Agglomerated grids

in a four grid W-type cycle in conjunction with the line-implicit preconditioner

described in Appendix D. Fig. 3.6 shows the control volumes associated with

these agglomerated grids.

The isentropic Mach number distribution on the blade surface is given in Fig. 3.7

for the case with an isentropic outlet Mach of unity. The sonic conditions are

obtained at x/c ≈ 0.47 on the suction side and at the trailing edge in the pressure

side resulting in fairly straight sonic line across the blade passage as shown in the

Mach number contours of Fig. 3.8a. The flow is accelerated along the suction

side up to x/c = 0.6 followed by a moderate deceleration downstream. For this

blade, the experimental data of Kiock et al. (1986) include exit flow angles, inlet

Mach number and loss coefficient defined as ξ = 1 − |v2|
|vis2| , where vis2 represents

the isentropic outlet velocity. The comparison between the experimental and the

computed values of such quantities as a function of the outlet Mach number is

reported in Fig. 3.9.

Fig. 3.10 compares the convergence history obtained using the line-implicit solver

of Appendix D, on a single grid and on four grid W-type cycle. The convergence

history of a single grid, point-Jacobi, iterative implicit scheme as the one used by

Sayma et al. (2000), is also plotted. It is evident that the single grid solution is

not converged and the reason of this could be blamed to the grid anisotropy as

well as to the blunt trailing edge of the blade which causes a recirculation bubble

which could be inherently unsteady (Fig. 3.8b). The single grid implicit scheme of

Sayma et al. (1997) converges very slowly because not designed to be effective in
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Figure 3.7: VKI LS59 rotor blade. Mis2 = 1, Re2 = 7.6 · 105. Isentropic Mach

number distribution
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(a) Mach number contours (b) Particle traces near the trailing edge

Figure 3.8: VKI LS59 rotor blade. Mis2 = 1, Re2 = 7.6 · 105. Computed solution

damping error arising from highly stretched meshes.

3.5.2 Impulsively accelerated flat plate

To demonstrate the capability of the present method for unsteady flow, the so-

lution of an impulsively accelerated flat plate in the laminar regime is presented.

This example is also known as Stokes first problem and an analytical solution for

incompressible flow is available (Schlichting 1979, Mattioli 1989). This analytical

solution shows that the time dependent solution collapses to a single solution of

nondimensional velocity versus the similarity parameter η defined as

η =
y

2
√
νt

(3.42)

where y is the normal distance from the flat plate, ν is the kinematic viscosity and

t is the physical time. The analytical solution take the simple form

u

u∞
= erf (η) (3.43)
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Figure 3.9: VKI LS59 rotor blade. Computed solutions
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where erf represents the error function (Schlichting 1979).

Three calculations were performed with the present method with 1, 5 and 10 phys-

ical time steps to reach the same physical time t = 0.001 sec. The maximum ratio

between the physical and pseudo time step, ∆t/∆τ , was of around 17,000 for the

case where a single time step was used to reached t = 0.001 sec. Fig. 3.11a shows

the comparison between the numerical and analytical solutions. As expected, the

smaller the physical time step, the better the agreement. If one used an explicit

method to calculate the unsteady flow at the same physical time level, than it

should have performed around 15,000 time steps using a CFL number of 1.5. For

the case of 5 time step the convergence of (3.35) for a given time level was obtained

with ≈ 15 W multigrid cycles using four grids. In terms of CPU time this means

that with 5 time steps the present method was ≈ 120 times faster than an explicit

Runge-Kutta integration method.

Fig. 3.11b shows the comparison of the residual within a given physical time step,

using a single grid and a four grids W-type cycle. As one would expected, the

convergece to a new physical time level improves if more the one grid are used.

However such improvement does not compare with the one obtained for steady-

state computations. Convergence histories similar to the one shown in Fig. 3.11b

represents the best result obtained for unsteady flows.

3.5.3 Vortex shedding past a cylinder

This test case is intended to predict the natural vortex shedding past a cylinder

in a laminar incompressible flow regime. Vortex shedding is one of many viscous

flows which, though posed with fixed and steady boundary conditions, evolve into

unsteady motions because of flow instability. If one consider a circular cylinder

with diameter d, then the incompressible flow field generated by a uniform velocity

at infinity u∞ is dependent solely upon the Reynolds number Red

Red =
ρ∞u∞d

µ∞
(3.44)

If Red < 40 the flow is steady. If Red > 40 the flow becomes unstable and conse-

quently unsteady when Red > 50. The flow field is caracterised by a unsteady wake

which consists of pairs of vortices shed alternately from the upper and lower part

of the cylinder surface. If 50 < Red < 150 such a wake structure is well organised
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Figure 3.12: Circular cylinder. Computational mesh

and is called Karman vortex sheet after a paper by Karman (1911) explaining this

alternation to be a stable configuration for vortex pairs (Schlichting 1979). An im-

portant feature of this flow is that the dimensionless cylinder frequency or Stroudal

number

St =
fd

u∞
(3.45)

remains constant ≈ 0.21 for 100 < Red < 10, 000. Thus, in this Reynolds number

range, the shedding cycle takes place during the time that the free-stream moves

approximately five cylinder diameters.

Fig. 3.12 shows the computational mesh used for this test case, it contains 2280

quadrilaterals in the boundary layer and 29863 triangles in the rest of the domain

for a total number of point of 17391. Fig. 3.13 shows the three agglomerated

grids used in the time accurate multigrid algorithm. Four different calculations

were performed for various Reynolds numbers with an inlet Mach number of 0.2

and the computed Stroudal number is reported in Fig. 3.14a together with the

experimental value of 0.21. The comparison is satisfactory for all four test cases.

Fig. 3.14b reports the evolution in time of the pressure coefficient at a point in the

wake close to the cylinder. The time history refers to three cycles of oscillations

after a periodic flow conditions is reached. The very periodic behaviour of the flow

is evident and proves the robustness and accuracy of the scheme.

The time step for those calculations was set to have 50 divisions over a cycle. This
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(a) Grid 2: 4308 cells (b) Grid 3: 1095 cells (c) Grid 4: 283 cells

Figure 3.13: Circular cylinder. Agglomerated grids

correspond to a local CFL number between two in the far field and three thousand

in the boundary layer region.

Figs. 3.15 reports the instantaneous particle traces in six instants over a cycle

(the seventh position would be equivalent to the first) for two different Red. The

shedding of the vortex is evident as well as the mechanism of their formation with

a vortex merging. This is evident in Fig. 3.15a between instants 3 and 4, and 6

and 1. It is worth to note the different pattern followed by the vortices for the two

Reynolds number under consideration. For Red = 400 the shedding structure is well

organised while for Red = 4, 000 the inertial forces play a more important role in

the wake flow with formations of large recirculation bubbles which are propagated

with small dissipation.

3.5.4 Transonic buffeting over a bicircular airfoil

Starting for about 1976, several experiments were carried out on transonic buffeting

over bicircular-arc airfoils at NASA Ames research center with the intent to provide

basic data to guide further development of computer codes (McDevitt et al. 1976).

The wind tunnel used for those experiments was designed for this purpose in order

to minimize upper and lower wall interference effects. The tests were conducted

at free-stream Reynolds numbers, based on airfoil chord length, ranging from 1 to

17 million. The test Mach number was varied from near the critical value of 0.71

to the highest possible without the airfoil chocking the channel. McDevitt et al.

(1976) presented unsteady results for a biconvex circular-arc airfoil with thickness-
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chord ratio of 0.18. The nominal test Mach for this airfoil is 0.775 and the wind

tunnel end walls were designed to minimize wall effects for this flow condition. At a

free-stream Reynolds number of 7 million, experiments suggest transonic buffeting

at a free stream Mach number in the range from 0.76 to 0.78. On the contrary, the

calculations show unsteadiness in the Mach number range from 0.765 up to 0.83.

The computed buffeting reduced frequency πfc/u∞ matches the experimental one

of ≈ 0.5.

Fig. 3.16 reports instantaneous Mach number contours in eleven instants over a

cycle while Fig. 3.17a shows the average and range of pressure coefficient distribu-

tion in the airfoil surface. Fig. 3.17b reports the evolution in time of the pressure

coefficient at a point in the airfoil corresponding to x/c = 0.7. The time history

refers to three cycles of oscillation after a periodic flow condition is reached. The

calculations were performed using roughly 45 divisions over a cycle (as indicated

in Fig. 3.17b). This correspond to a local CFL number between 0.1 in the far-field

and 10,000 in the boundary layer.

3.6 Concluding Remarks

• A FV scheme for the solution of the Favre averaged Navier-Stokes equations

has been presented. The method employs an edge-based data structure as well

as a nearest-neighbour stencil for the discretisation of the Laplacian operator.

The method enables the use of 2D and 3D unstructured, structured or block

structured mixed-element grids without any modifications to the numerical

scheme.

• A drawback of this approach is the need to evaluate the mixed derivative

terms of the viscous fluxes by using a standard FV method which does not

yield a nearest neighbour stencil. However, in cases where the viscous effects

are in the boundary layer only, such terms are very small and hence the

method is expected to be well suited to engineering applications.

• The same time relaxation multigrid algorithm has been applied to both steady

and unsteady time-marching aerodynamics. The benefit of unconditional

stability has been demonstrated by computing unsteady viscous flow with

time-steps corresponding to CFL numbers on the range 1000 - 10,000.
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• The multigrid technique efficiently performs for steady-state flow computa-

tions even though its robustness needs to be improved for 3D turbulent flow

simulations. For time-marching unsteady flows, the multigrid technique does

not perform as well. Convergence histories similar to the one shown in Fig.

3.11b represents the best result obtained. The reason for such a break down is

not clear. However the stability restriction in (3.41) could play and important

part near the far-field boundaries.

• For unsteady computations, an attractive way forward could be the imple-

mentation of an adaptive scheme which select different time-marching tech-

niques in different zones depending on the local situation.

• The scheme produces good and stable results for highly distorted meshes as

demonstrated by Sbardella & Imregun (2000).
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Chapter 4

Linearised Unsteady

Navier-Stokes Solver

This Chapter extends the hybrid grid flow solver of in the previous Chapter, to

a time-linearised version of the unsteady Favre-averaged Navier-Stokes equations.

The linearised unsteady viscous flow equations are derived by assuming small har-

monic perturbations from a steady-state flow and the resulting equations are solved

using a pseudo-time marching technique. Such an approach enables the same nu-

merical algorithm to be used for both the non-linear steady and the linearised

unsteady flow computations. An important feature of the work is the full lineari-

sation of the Spalart-Allmaras turbulence model. The methodology was validated

for a number of 2D test cases such as linear flat-plate cascades and flat plates

with laminar boundary layers. A more advanced study is given for two differ-

ent flow regimes past a turbine cascade, the so-called 11th International Standard

Configuration, for which there are both steady and unsteady flow measurements.

Linearised unsteady flow predictions were discussed for several modelling levels:

inviscid, viscous with frozen turbulence and fully turbulent viscous. The findings

highlighted the need for a full linearisation in cases where the steady-state flow

exhibits significant viscous effects such as separation and recirculation.

4.1 Towards Viscous linearised representations

In Section 1.2.1 a literary survey on linearised method is given. The methods pre-

sented were based on an inviscid flow representation and thus they cannot deal

80
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with cases where viscous effects are important: shock-boundary layer interaction,

flow separation and recirculation. It should be noted that such features are partic-

ularly important for turbomachinery unsteady flows because most investigations

are conducted at off-design conditions. For instance, generally speaking, fan blades

do not encounter flutter problems at the design speed but part-speeds may cause

some concern. The flow behaviour at these lower speeds is dominated by viscous

effects and hence the linearised analysis tools must somewhat include the necessary

features.

One of the first time-linearised Navier-Stokes analyses of a cascade unsteady flow

was reported by Cizmas & Hall (1995). The computational domain was divided

into two parts: a viscous flow near the airfoil and in the wake region, and an in-

viscid flow in the rest of the domain. The viscous flow was modelled using a finite

difference discretisation of the boundary layer equations while the inviscid flow was

modelled using a finite element discretisation of the full potential equation. How-

ever the analysis was limited to incompressible flows and to prescribed boundary

layer assumption. Ning & He (1991b) presented a novel quasi 3D non-linear har-

monic Euler/Navier-Stokes method which combines the computational efficiency of

linearised techniques and some of the accuracy of non-linear formulations. Holmes

et al. (1997) are amongst the first researchers to present a 3D time-linearised

Navier-Stokes analysis with a k − ω turbulence model. Their results were limited

to flows with a thin attached boundary layer and whether or not the turbulence

model itself needed to be linearised was discussed in detail. Although this issue will

be dealt with later in this Chapter, an overview will be given here. Avoiding the

linearisation of the turbulence model and using the mean-flow values for the eddy

viscosity, the so-called frozen turbulence model, is relatively straightforward. On

the other hand, the linearisation of the turbulence model may require significant

algebra and coding effort. The mathematical formulation of a specific turbulence

model and its mesh density requirement near the blade surface are further impor-

tant considerations. For instance, a very fine mesh requirement may well negate

some of the computational advantages. In any case, an important contribution is

made by Clark & Hall (1999) who reported a 2D linearised Navier-Stokes analysis

using the one-equation Spalart-Allmaras (1992) turbulence model. They predicted

the aeroelasticity behaviour of a fan blade at some off-design condition which in-

volved high incidence and flow separation over much of the suction surface. Their

results showed good overall agreement with the available experimental data.
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The present Chapter describes a 2D/3D finite-volume (FV) scheme for a full dis-

cretisation of the time-linearised Navier-Stokes equations. The important features

of the present work are the discretisation of the domain via a single, unified edge-

data structure for mixed-element meshes and the use of a Laplacian weight which

results in nearest neighbour stencils. Furthermore, the one-equation turbulence

model of Spalart-Allmaras (1992), which has the form of a sixth conservation equa-

tion, was linearised for a consistent formulation. Such a unified approach allows the

use of 2D and 3D structured, unstructured or block-structured grids with mixed

elements under the same numerical scheme. The results were validated against

available analytical and experimental data. The differences between linearising in-

viscid, frozen turbulence and fully-turbulence models are discussed in some detail

for the case of the 11th International Standard Configuration.

4.2 Time-linearised Navier-Stokes Equations

This Section deals with the linearisation of the 3D unsteady, compressible, Favre-

averaged Navier-Stokes equations (3.1) and the correspondent boundary conditions.

Since (3.1) as been written in a ALE formulation, the inclusion of linearised blade

oscillation becomes straightforward by simply linearising the mesh motion as well

as the flow equations.

4.2.1 Linearisation

The linearisation of the governing equations around a steady-state solution starts

by expressing the conservation variables and the coordinates as a sum of a mean

steady-state value and a small perturbation:

x⃗
(
x⃗, t

)
= x⃗+ ˜⃗x (x⃗, t) (4.1)

U
(
x⃗, t

)
= U

(
x⃗
)
+ Ũ

(
x⃗, t

)
(4.2)

It is then possible to express the unsteady flux vector F⃗ in (3.4) as a summation

of three different terms:

F⃗ = F⃗+
˜⃗
F− ˜⃗

Fg (4.3)
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where F⃗ represents the mean steady value of the inviscid fluxes,
˜⃗
F is the unsteady

part of the inviscid fluxes which does not include the grid motion while
˜⃗
Fg includes

the unsteady terms due to the grid motion only. To first order, using (3.2) and

(3.4) the terms above can be expressed as:

F⃗ = U
(
v⃗ − Ω⃗× x⃗

)
+ F⃗p (4.4)˜⃗

F = Ũ
(
v⃗ − Ω⃗× x⃗

)
+U ˜⃗v + ˜⃗

Fp (4.5)

˜⃗
Fg = U

(
Ω⃗× ˜⃗x+ d˜⃗x

dt

)
(4.6)

Substituting in (3.1), one obtains:

∂

∂t

∫
V

(
U+ Ũ

) (
dV + dṼ

)
+
∮
S

(
F⃗+

˜⃗
F− ˜⃗

Fg

)
·
(
n⃗dS + ⃗̃ndS

)
−

1

Re

∮
S

(
G⃗+

˜⃗
G
)
·
(
n⃗dS + ⃗̃ndS

)
−
∫
V

(
S+ S̃

) (
dV + dṼ

)
= 0 (4.7)

By dropping the steady-state terms which must always satisfy (3.1) and by neglect-

ing second-order terms like ŨdṼ , (4.7) becomes:

∂

∂t

∫
V
ŨdV +

∮
S

(˜⃗
F− 1

Re

˜⃗
G
)
· n⃗dS −

∫
V
S̃dV =

∫
V
SdṼ − ∂

∂t

∫
V
UdṼ

−
∮
S

(
F⃗− 1

Re
G⃗
)
· ⃗̃ndS +

∮
S

˜⃗
Fg · n⃗dS (4.8)

The system of equations in (4.8) is linear in the sense that all the coefficients

multiplying the unsteady flow term Ũ depend upon the steady-state flow term U

and geometric properties but not on time. In other words, a general solution of

(4.8) can be represented via the following summations:

˜⃗x (x⃗, t) = Re
∑
ω

̂⃗x (x⃗, ω) e−iωt (4.9)

Ũ
(
x⃗, t

)
= Re

∑
ω

Û
(
x⃗, ω

)
e−iωt (4.10)

where ̂⃗x represents the first-order complex amplitude of grid motion about the

mean position x⃗, and Û represent the complex amplitude of the small unsteady

perturbation of the conservation variables. By substituting the assumed solutions
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(4.9) and (4.10) for a single reduced frequency ω into the linearised system of

equations (4.8), one obtains:

∮
S

(̂⃗
F− 1

Re

̂⃗
G
)
· n⃗dS −

∫
V

(
iωÛ+ Ŝ

)
dV =

∫
V

(
iωU+ S

)
dV̂ −∮

S

(
F⃗− 1

Re
G⃗
)
· ⃗̂ndS +

∮
S
U
(
Ω⃗× ̂⃗x− iω ̂⃗x) · n⃗dS (4.11)

In equation (4.11) the left-hand side contains homogeneous terms only, while the

right-hand side contains non-homogeneous terms which depend on the (known)

steady-state flow and the prescribed grid motion. The non-homogeneous terms are

identically zero if there is no grid motion (̂⃗x = 0), as is the case for forced response

problems.

Since the Jacobian with respect to the steady-state flow variables are real quantities,

the homogeneous terms of the form iω
∫
V ÛdV , which represent the time rate of

change of the perturbed conservation variables, couple the real and imaginary parts

of the perturbed flow equations.

Indicating with Ĥ
(
U, x̂

)
the summation of the non-homogeneous terms on the

right-hand side of (4.11) and introducing a pseudo-time derivative so that standard

time-marching algorithms can be used, (4.11) becomes:

∂

∂τ

∫
V
ÛdV +

∮
S

(̂⃗
F− 1

Re

̂⃗
G
)
· n⃗dS −

∫
V

(
iωÛ+ Ŝ

)
dV = Ĥ

(
U, ̂⃗x) (4.12)

4.2.2 Boundary conditions

There are five different sets of boundary conditions: flow tangency for inviscid flow

calculations, no-slip condition for viscous flow calculations, periodic boundaries,

inflow and outflow.

Flow tangency

The flow tangency condition at the solid walls is expressed by the requirement

that there is no flow through the surface of the moving wall. Therefore, the local

fluid velocity relative to the moving wall has no component normal to the wall.

Mathematically this can be expressed as:

u⃗ · n⃗ =

(
v⃗ − Ω⃗× x⃗− dx⃗

dt

)
· n⃗ = 0 (4.13)
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Linearising and keeping zeroth- and first-order terms gives the mean flow and the

linearised tangency conditions respectively:

(
v⃗ − Ω⃗× x⃗

)
· n⃗ = 0 (4.14)(̂⃗v − Ω⃗× ̂⃗x+ iω ̂⃗x) · n⃗+

(
v⃗ − Ω⃗× x⃗

)
· ̂⃗n = 0 (4.15)

Applying condition (4.15) to the evaluation of the flux term for a solid wall surface

yields:

∮
wall

[ ̂⃗
F−U

(
Ω⃗× ̂⃗x− iω ̂⃗x)] · n⃗dS +

∮
wall

F⃗ · ⃗̂ndS

=



0

p̂ nxdS + p n̂xdS
p̂ nydS + p n̂ydS
p̂ nzdS + p n̂zdS

p̂
(
Ω⃗× x⃗

)
· n⃗dS + p

[(
Ω⃗× x⃗

)
· ⃗̂ndS +

(
Ω⃗× ̂⃗x− iω ̂⃗x) · n⃗dS]


(4.16)

No-slip condition

The no-slip condition at the solid walls is expressed by the requirement that the

local fluid velocity relative to the moving wall must be zero. Mathematically this

can be expressed as:

u⃗ = v⃗ − Ω⃗× x⃗− dx⃗

dt
= 0 (4.17)

As before, linearising and keeping zeroth- and first-order terms gives the mean flow

and the linearised no-slip conditions respectively:

v⃗ − Ω⃗× x⃗ = 0 (4.18)̂⃗v − Ω⃗× ̂⃗x+ iω ̂⃗x = 0 (4.19)

Periodic boundaries

The periodic boundary conditions are somewhat more complicated than those for

the steady-state flow equations. In a flutter application, the blade may oscil-

late with a non-zero phase shift with respect to its neighbours. Similarly, in a
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wake/rotor interaction, there will be a phase difference in the unsteady pressure

distributions experienced by neighbouring rotor blades if there is no one-to-one cor-

respondence between the wakes and the rotor blades. Such phase differences are

represented by the interblade phase angle ϕ. Using an axisymmetric coordinate

system, the periodic boundary condition can be written as:

Ûθ0+∆θ = exp (−iϕ)Ûθ0 (4.20)

where Û is the state variable at position θ0, ∆θ representing the angular pitch of

the blade-to-blade passage. The same equation can be used for a 2D cascade, by

replacing θ0 and ∆θ by y0 and P in a Cartesian coordinate system.

Inflow and outflow boundaries

Unsteady flow computations require non-reflecting boundary conditions at the far-

field boundaries to prevent spurious inwards reflections of outgoing waves. The

single-frequency non-reflecting boundary conditions of Giles (1990a) will be used

here. These boundary conditions are constructed with the aid of the 1D charac-

teristic variables. The equations relating the harmonic primitive variables and the

harmonic characteristic variables can be written as:



ŵ1

ŵ2

ŵ3

ŵ4

ŵ5


=



−c2 0 0 0 1

0 0 ρc 0 0

0 0 0 ρc 0

0 ρc 0 0 1

0 −ρc 0 0 1





ρ̂

v̂x

v̂θ

v̂r

p̂


(4.21)

The first characteristic variable represents the 1D entropy wave, the second and

third represent the two 1D vorticity waves while the fourth and the fifth character-

istic variables represent the forward and backward 1D pressure waves. These 1D

characteristic variables can be expressed as a sum of spatial harmonics satisfying

the periodicity condition with the correct interblade phase angle.

ŵn =
∑
m

ŵm

n exp

[
iθ
2πm− ϕ

∆θ

]
(4.22)
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Following the work of Giles (1990a), it is possible to express the m-th harmonic of

the incoming 1D characteristic variables as a function of the m-th harmonic of the

outgoing ones. At the inflow, the boundary condition is:


ŵm

1

ŵm
2

ŵm
3

ŵm
4

 =


0

(1−Mx)βm

1−Mθβm+Tm

0
(1−Mx)

2β2
m

(1−Mθβm+Tm)2

 ŵ
m

5 (4.23)

while at the outflow it becomes:

ŵm

5 =
2−Mxβm

1−Mθβm + Tm

ŵm

2 +
1−Mθβm − Tm

1−Mθβm + Tm

ŵm

4 (4.24)

In both cases βm is an inverse reduced frequency defined by:

βm =
2πm− ϕ

r∆θω
c (4.25)

where c is the average speed of sound and r∆θ is the product of radius and angular

pitch. Tm in (4.24) is defined by:

T 2

m = (1−Mθβm)
2 − (1−M 2

x) β
2

m (4.26)

Tm =

 sign (1−Mθβm)
√
T 2

m T 2
m > 0

sign (ω) i
√
−T 2

m T 2
m < 0

(4.27)

Giles (1990a) suggested that the periodic boundary conditions should be lagged

when using pseudo-time marching, though this was not found necessary with the

particular solver used here. Equations (4.23) & (4.24) are the exact 2D analytical

boundary conditions. These can be extended to 3D problems by imposing them

in a strip-theory fashion at each spanwise radial station at the domain boundary,

the so-called quasi-3D non-reflecting boundary conditions (Saxer & Giles 1993).

One limitation of such an approach is the inherent assumption that the radial vari-

ation in the mean and unsteady flow fields is considerably smaller than that in

the tangential direction. This is not necessarily the case in aeroacoustic applica-

tions. A more general 3D approach, developed by Hall et al. (1993), is a mixed

analytical/numerical boundary condition treatment. The assumption is that the
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mean flow field is axisymmetric and uniform in the axial direction, but may have

significant radial variation. The unsteady flow-field is decomposed into Fourier

modes in the circumferential direction, and a radial eigenvalue problem is solved

to determine the wave numbers and the radial mode shapes of the unsteady flow

modes. The modal information is then used to construct highly non-reflective

boundary conditions. However, in some special cases, the identification of the

incoming and outgoing modes may be difficult and truncation errors may affect

the scheme adversely. Nevertheless, the approach is probably the most general

boundary condition treatment that is currently available.

4.3 Numerical Implementation

The extension of the finite volume FV edge-based scheme, described in Chapter 3,

to the linearised equations will be described in this Section. Similar to (3.16), the

semi-discrete form of (4.12) takes the form:

∂
(
VIÛI

)
∂τ

+
mI∑

s = 1

[
|η⃗IJs|

(
F̂IJs − ĜmIJs

)
− τIJsĜlIJs

]
= VI

(
iωÛI + ŜI + ĤI

)
(4.28)

4.3.1 Inviscid fluxes

The discretisation of the inviscid flow terms in (4.28) is given by:

mI∑
s = 1

|η⃗IJs| F̂IJs (4.29)

where F̂IJs represents the inviscid flux function along edge IJs which is obtained

using a central difference scheme with added matrix artificial dissipation. This

artificial dissipation is a blend of second and fourth order differences. The fourth

order terms ensure the stability of the scheme in smooth regions of the flow, while

the second order terms are required to damp numerical oscillations in the vicinity

of discontinuities. The inviscid flux function is expressed as:

F̂IJs =

̂⃗
FI +

̂⃗
FJs

2
· η⃗IJs

|η⃗IJs|
− D̂IJs (4.30)

where the linearised artificial dissipation D̂IJs along the edge IJs is given by:
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D̂IJs =
1

2

∣∣∣AIJs

∣∣∣ [ψ ∆Û− ϵ4
(
1− ψ

)
∆L

(
Û
)]

(4.31)

The difference operator ∆ is given in (3.20).
∣∣∣AIJs

∣∣∣ is the standard Roe matrix

(Roe 1981) between the two steady-state stages UI and UJs; ϵ4 ≈ 1/16 is the

fourth order artificial dissipation coefficient. L is the pseudo-Laplacian operator

reported in (3.21) while ψ represents the limiting function which varies between 0

and 1 and it is required in order to switch the scheme to first order (ψ = 1) in the

vicinity of discontinuities. This limiter is computed for the steady-state flow only

and its expression is given by (3.25) and (3.26).

4.3.2 Viscous terms

The viscous fluxes associated with the mixed derivatives Gm in (4.28) are treated

in the same way as their inviscid counterparts and their contribution to (4.28) is

given by:

ĜmIJs =
1

Re

(̂⃗
GmI +

̂⃗
GmJs

)
· η⃗IJs

|η⃗IJs|
(4.32)

where

̂⃗
Gm =

̂⃗
Gm

∣∣∣∣
µ

+
̂⃗
Gm

∣∣∣∣
∆U

(4.33)

The first term on the left-hand side of (4.33) contains the contribution due to the

gradients of the unsteady flow velocity and temperature at constant viscosity µ.

The second term takes into account the variation of the unsteady viscosity only.

The Laplacian terms are treated in a different way in order to improve both the

accuracy and the robustness of the numerical scheme. In (4.28), these terms take

the form:

ĜlIJs = ĜlIJs

∣∣∣
µ
+ ĜlIJs

∣∣∣
∆U

(4.34)

where
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ĜlIJs

∣∣∣
µ

=
1

Re



0

µIJs ∆v̂1

µIJs ∆v̂2

µIJs ∆v̂3(
µv⃗
)
IJs

·∆̂⃗v + γ
γ−1

(
µl

Prl
+ µt

Prt

)
IJs

∆T̂


(4.35)

ĜlIJs

∣∣∣
∆U

=
1

Re



0

µ̂IJs ∆v1

µ̂IJs ∆v2

µ̂IJs ∆v3(
µ̂⃗v + µ̂v⃗

)
IJs

·∆v⃗ + γ
γ−1

(
µ̂l

Prl
+ µ̂t

Prt

)
IJs

∆T


(4.36)

The subscript IJs indicates an arithmetic mean over nodes I and Js as indicated

in (3.29) and ∆ is given in (3.20).

The evaluation of terms
̂⃗
Gm

∣∣∣∣
∆U

and ĜlIJs

∣∣∣
∆U

requires the linearisation of the tur-

bulence model used in the steady flow solver. If these terms are neglected, the

linearised viscous terms can still be represented by simply using the mean-flow val-

ues for the eddy viscosity, the so-called frozen turbulence approach. Such a scheme

is relatively simple to implement for any turbulence model, while a full linearisa-

tion will depend on the particular type of the turbulence model used. A linearised

version of the Spalart-Allmaras (1992) turbulence model is given in the Appendix

B.

4.3.3 Time integration

The pseudo-time derivative introduced in (4.12) allows the use of standard time-

marching algorithms when solving the linearised equations. A compact form of

(4.28) can be written as

∂
(
VIÛI

)
∂τ

= RI

(
Û
)

(4.37)

Many different approaches are possible. For instance, Hall & Clark (1991) use an

explicit Lax-Wendroff technique together with local time-stepping and multigrid in

order to accelerate convergence to a steady-state. Marshall & Giles (1997) use an

explicit multistage Runge-Kutta technique with local-time stepping. Montgomery
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& Verdon (1997a) proposed a two-point backward implicit difference and the ex-

pansion of the residual about the nth time level.

Here, the same preconditioned multigrid algorithm developed for steady-state and

non-linear unsteady time-marching aerodynamics is used. In a compact form the

algorithm is written as

[
P
]−1

LτδÛI = RI

(
Û
)

(4.38)

Lτ represents a multistage Runge-Kutta operator while
[
P
]−1

represents a precon-

ditioner developed for accelerating steady-state calculations, evaluated using the

steady-state unknowns.

Such a preconditioned Runge-Kutta relaxation algorithm is used as a smoother in

an agglomeration multigrid algorithm described in Appendix D.

4.4 Test Cases

This Section presents three different test cases for the validation of the present

method. The first test case is a comparison against the classical subsonic flat plate

cascade theory of Smith (1972), the so-called LINSUB benchmark code (Whitehead

1987). The second test case checks the computational results against the asymp-

totic analytical solution derived by Lighthill (1954) for an unsteady laminar flow.

The third test case examines the implications of using inviscid, frozen-turbulence

and fully-turbulent models when linearising the unsteady flow over a transonic tur-

bine blade, the so-called 11th International Standard Configuration (Fransson et

al. 1998).

4.4.1 Linear flat-plate cascade

Small-amplitude perturbations of a uniform, inviscid steady-state flow past an un-

loaded flat-plate cascade are studied first. Such cascades can be used for a variety

of applications: wake/blade interaction, potential/blade interaction, aeroelasticity

studies by including the blade’s bending and torsional motion. The main aerody-

namic parameters are the Mach number, reduced frequency, pitch-to-chord ratio,

stagger angle and the interblade phase angle.
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(a) Geometry
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(b) Computational domain (2,232 points)

Figure 4.1: Flat plate cascade. Geometry and computational domain

Three different disturbances were studied for a pitch-to-chord ratio of 0.5, a stag-

ger angle of 30o and a mean-flow Mach number of 0.7. For all three cases, the

results were checked against the benchmark LINSUB code by plotting the real and

imaginary parts of the (complex) unsteady pressure difference across the plate.

The geometry and the computational domain are shown in Fig. 4.1. The mesh

has high resolution around the trailing and leading edges in order to handle the

singularities which occur in these regions.

The first disturbance simulates a wake/blade interaction, an incoming sinusoidal

wake with a reduced frequency of π being specified at the inflow boundary. The

interblade phase angle is −90o. Fig. 4.2 shows excellent agreement between the

present method and the benchmark program LINSUB. The second disturbance

simulates potential/blade interaction, an incoming pressure wave with a reduced

frequency of 2.0 being specified at the outflow boundary. The interblade phase

angle is 0o. Fig. 4.3 shows excellent agreement between the present method and

the benchmark program LINSUB. The last disturbance studied is for a bending

motion with a reduced frequency of 2.0 and an interblade phase angle of 90o. Once

again, excellent agreement is observed from Fig. 4.4.
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Figure 4.2: LINSUB test case. Pressure jump on flat plate due to wake/rotor

interaction (ω = π, ϕ = −90o)
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Figure 4.3: LINSUB test case. Pressure jump on flat plate due to upstream acoustic

wave (ω = 2, ϕ = 0o)
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Figure 4.4: LINSUB test case. Pressure jump on flat plate due to bending oscilla-

tion (ω = 2, ϕ = 90o)
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Figure 4.5: Computational domain for laminar flow over a flat plate cascade

4.4.2 Unsteady laminar boundary layer on a flat plate

This test case studies an unsteady laminar boundary layer with fluctuations in

external velocity. The computational mesh is shown in Fig. 4.5. The boundary

layer region is discretised using 15 layers of quadrilateral elements, while the rest of

the domain consists of triangles. The pitch to chord ratio of this cascade is unity so

that the flow is as close as possible to that over an isolated flat plate. The steady-

state flow over an unstaggered flat plate cascade was obtained for a Mach number

of 0.2. The freestream Reynolds number is 60,000. Such a case is well within

the incompressible flow regime, thus enabling a meaningful comparison with the

Blasius solution. Indeed, the computed steady-state velocity profile and the skin

friction coefficient are found to be in very good agreement with the incompressible

laminar boundary layer theory of Blasius (Fig. 4.6). Once the steady-state flow

has been validated, the next stage is to study a velocity perturbation of the form:
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u = εu∞e
−iωt (4.39)

where u∞ is the freestream velocity and ε a small value (≪ 1). The disturbance is

along the plate, in the freestream direction, denoted by co-ordinate x. Lighthill’s

(1954) theory provides two asymptotic values for the unsteady skin friction coeffi-

cient, one for very small and the other for very large reduced frequency values. Fig.

4.7a shows the wall shear stress amplitude variation with reduced frequency ωx/u∞

while Fig. 4.7b shows the computed phase angle between shear stress and external

velocity. As expected, the computed results become asymptotic for the limiting

cases of very small and very large reduced frequency. Similar comparisons between

numerical results and Lighthill’s theory are also reported by Cebeci (1977).

4.4.3 Turbine cascade

In this Section the steady and unsteady flow due to bending motion of a turbine

blade in the direction normal to its chord is analysed. The turbine blade geome-

try under consideration represents the 11th International Standard Configuration

which have been studied for several flow regimes by Fransson et al. (1998)1. Two

particular flows will be considered here: a subsonic attached flow and a transonic

flow showing a separation bubble on the suction surface. Fig. 4.8 shows the com-

putational mesh used for all viscous calculations. There are 9,312 quadrilaterals

in the boundary layer region and 7,751 triangles in the rest of the domain, the

total number of points being 13,481. A second mesh, used for the inviscid calcu-

lations, has been obtained from the viscous mesh of Fig. 4.8 by simply removing

the quadrilateral elements in the boundary layer.

Steady-state flow results. For the subsonic flow case the inlet flow angle is

−15.2o, the outlet isentropic Mach number is 0.69 and the inlet Reynolds number,

based on the blade’s chord, is 650, 000. The maximum value of y+ is of around

4 which guarantees a good resolution of the viscous sublayer using the Spalart-

Allmaras turbulence model. The predicted Mach number contours are shown in

Fig. 4.9 while a comparison of the inviscid and viscous analyses with measured

1The data for the International Standard Configurations can be found at

http://www.egi.kth.se/ekv/stcf/
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Figure 4.6: Steady laminar flow over a cascade of flat plates
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Figure 4.7: Unsteady wall shear stresses for an oscillating laminar boundary layer
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Figure 4.8: 11th Standard configuration. Viscous mesh
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Figure 4.9: 11th Standard configuration - subsonic case. Steady-state Mach con-

tours
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data is given in Fig. 4.10. For the suction surface, both the viscous and inviscid

computations somewhat overpredict the Mach number distribution at around mid-

chord. However, a similar solution was obtained by Fransson et al. (1998) and the

reasons for the discrepancy are discussed in some detail. Here, we will consider that

the steady-state flow has been captured adequately for the purposes of providing

a starting point for the linearised unsteady flow.

For the transonic off-design case the inlet flow angle is 34o, the outlet isentropic

Mach number is 1 and the inlet Reynolds number, based on the blade’s chord,

is 860, 000. The maximum y+ value is around 5. The predicted Mach number

contours are plotted in Fig. 4.11a. A particular feature of the flow, the recirculation

bubble on the suction surface, is shown in Fig. 4.11b. Because of the significant

viscous features, the Navier-Stokes analysis shows a much better agreement with

the measured data, with perhaps the exception of the trailing-edge behaviour (Fig.

4.12). However, as discussed by Fransson et al. (1998), the pre-shock Mach number

is very sensitive to the experimental inlet conditions. In any case, as expected, a

viscous analysis is required to predict the separation bubble of the suction side

which occurs between 10 − 30% blade chord, a feature that can be seen from the

flow deceleration in Fig. 4.12. As will be discussed below, such differences in the

steady-state flow will lead to major discrepancies for unsteady flow predictions.

Linearised unsteady flow results The unsteadiness due to bending motion of

the blade in the direction normal to its chord was computed using the linearised

flow solver. The reduced frequency is 0.21 for the subsonic case and 0.15 for the

transonic case. Three different sets of flow calculations were performed for each

case: (i) inviscid linearised using an inviscid base steady-state flow, (ii) viscous

linearised with frozen turbulence using viscous fully-turbulent base flow, and (iii)

viscous fully-linearised using the same viscous base flow as in (ii). In calculations

(ii), neither the laminar nor the turbulent viscosities were linearised and their values

were kept fixed at their steady-state values. Calculations (iii) were performed with

a fully-linearised Spalart-Allmaras turbulence model.

The amplitude and phase of the predicted unsteady pressure coefficient2 distri-

bution are compared to measured data in Figs. 4.13 and 4.14 for the subsonic

case. The first noticeable feature is the similarity of the amplitude predictions for

2c̃p = c p̃
h(p01−p1)

, where h is the bending amplitude and c the blade chord.
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the three modelling levels, though some deviations can be observed for the phase

plots. This result is somewhat expected because of the similarity of the inviscid

and viscous steady-state solutions. There is reasonable overall agreement with the

measured data, though the undershoot at around 50% chord is not captured in any

of the computations. An inspection of the phase plots reveals that the negative to

positive (or stable to unstable) phase jump, is predicted much further downstream

than the measured position. However, the fully non-linear viscous unsteady calcu-

lations of Franson et al. (1998) exhibit the same trend and hence the cause of the

discrepancy is not due to linearisation.

The amplitude and phase of the predicted unsteady pressure distribution is com-

pared to measured data in Figs. 4.15 and 4.16 for the transonic case. The discrep-

ancies between different the three modelling levels is now more pronounced. The

linearised inviscid approach is seen to overpredict the unsteady pressure coefficient

on the suction side of the blade both in the recirculation region (0− 30% of chord)

and around the trailing-edge. In the recirculation region, the full linearisation of

the viscous terms yields better results than freezing the turbulence model and the

two approaches are seen to be equivalent elsewhere.

4.5 Concluding Remarks

• A finite-volume scheme has been presented for the solution of the linearised

viscous flows for turbomachinery applications. The method employs an edge-

based data structure and uses a nearest neighbour stencil for the discretisation

of the Laplacian operator. Both 2D and 3D structured, unstructured or block

structured grids with mixed elements can be used without any modification

of the numerical scheme.

• The proposed time-linearised Navier-Stokes analysis is applicable to off-design

conditions where viscous effects are not limited to the boundary layer.

• The method is computationally very efficient, making it a useful tool for

routine aeroelasticity design calculations. For a given frequency and an in-

terblade phase angle, the unsteady flow computation is about the same as

the background steady-state flow computation. Although not reported in

the main body of the Chapter, the time-linearised viscous analysis results

for the 11th Standard Configuration are in very good agreement with the
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non-linear time-marching viscous predictions of Fransson et al. (1998). It is

anticipated that the non-linear computations will take about an order of mag-

nitude longer. However, the issue whether linearised methods are applicable

to all flow regimes is not one that is addressed here.

• The transonic flow results show that the linearisation of the turbulence model

plays an important role wherever the viscous effects are important, exempli-

fied here by the recirculation bubble. When there are no such effects, the

frozen turbulence approach should produce very similar results. In other

words, an inspection of the steady-state solution should provide guidance as

to which modelling level would be appropriate.

• Although only 2D cases are presented in this Chapter, 3D flows have also

been studied3 albeit with a very significant increase in CPU effort. A fully-

linearised turbulence model requires fine meshes near the wall, hence the

problem size becomes much larger than those cases where a wall function

is used. In such cases the unsteady shear stresses are neglected so that a

linearised wall function is not needed.

3An application to 3D fan flutter prediction is reported in Vahdati et al. (2000).
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Figure 4.10: 11th Standard configuration - subsonic case. Isentropic Mach number

distribution on the blade
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Figure 4.15: 11th Standard configuration - transonic case. Amplitude of c̃p (ω =
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Chapter 5

Stator-Rotor Interaction in a

Transonic Turbine Stage

This chapter presents a detailed numerical analysis of a stator-rotor interaction in

a typical high pressure (HP) turbine stage of contemporary turbomachines using

both linear and non linear unsteady flow representations. The sources of unsteadi-

ness on the rotor passage are evaluated from the steady-state outlet stator solution.

These disturbances are Fourier transformed and split into vortical and potential

components in order to assess the influence of each on the rotor unsteady aerody-

namics. The computed results are compared with the experimental data measured

at the Osney Laboratory’s rotating turbine facility. Good qualitative, and in most

cases quantitative, agreement has been obtained. In the final part of the chap-

ter, the results of the linearised method are compared with those obtained from a

non-linear time marching technique. There is a surprising overall agreement, which

indicates that the unsteady flow field generated by relative blade motion can be

considered a quasi linear phenomenon for the HP turbine studied.

5.1 Introduction

Two different numerical techniques for the calculation of steady and unsteady aero-

dynamics have been presented in the previous two chapter. These two methods will

now be used for the investigation of the unsteady pressure fluctuations on a typical

rotor blade. The unsteadiness is caused by its relative motion with respect the

upstream stationary nozzle guide vane (NGV). The data required for such an in-

112
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vestigation consists only of the two blade geometries, the stationary flow boundary

conditions upstream of the NGV blade and downstream of the rotor blade and the

rotational speed. The analysis process begins with the calculation of the steady-

state flow-field for the given set of flow conditions and rotational speed. The next

step is the evaluation of the unsteady rotor pressure fluctuations caused by both

wake and potential effects. A description of the unsteady phenomena of interest,

unsteady pressure fluctuations on the rotor blade, will be given in some detail. The

the details of the experimental work carried out at Oxford Osney Laboratory will

also be included for the sake of completeness.

5.1.1 Description of the problem

The first step towards the unsteady aerodynamics analysis of turbomachinery

blades, is the computation of the corresponding steady non-linear flow. A mul-

tistage steady-state flow will be presented in section 5.2.3 and its complex features

such secondary flows, tip-leakage losses will be discussed in some details.

Once the steady-state flow is known the question is the selection of a “best analysis”

for the prediction of unsteady effects. Before offering an answer to this, it is

appropriate to discuss, first, what one would hope to get out of such calculations.

The focus of this chapter is a numerical tool that can be used by designers as

a part of an industrial design system. Major concernsdue to flow unsteadiness

are the possibility of blade flutter and excessive forced response. Flutter is by

definition a linear problem since it is concerned with possible growth of infinitesimal

unsteady perturbations. A growing body of evidence suggests that the forced

response problem is also largely linear. Comparison between linear and non-linear

calculations, for levels of unsteadiness typical of engine conditions, show that the

linear calculations predict the forced response to within 5% (Hall 1991, Suddhoo et

al. 1991). This level of accuracy is perfectly adequate for all practical engineering

design purposes and is probably within the level of other modelling errors.

For these reasons an unsteady linear Navier-Stokes analysis is performed on the

rotor blade in order to evaluate the magnitude of unsteady loads caused by its

relative motion with respect the upstream nozzle guide vane. Such a route offers

great advantages over non-linear time marching methods in terms of speed and

storage, while still retaining the key features of the flow.

The sources of unsteadiness are evaluated from the NGV outlet non-uniformities
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and imposed as boundary conditions at the inlet of the rotor passage. More speci-

ficly the NGV outlet non-uniformities are Fourier decomposed and split into vortical

and potential components. Each Fourier mode is associated with its own unsteady

frequency and interblade-phase angle as described in appendix C. Two linear cal-

culations are performed for each Fourier mode: the vortical-rotor interaction, also

labelled wake-rotor interaction, and the potential flow interaction. Following this

route it is possible to estimate the relative influence of the NGV wake and potential

flow field on the rotor unsteady aerodynamics. Since the governing equation are

linears the two unsteady solutions can be superimposed to give the total unsteady

loads for a given Fourier mode. This approach is relatively straightforward as well

as beeing a suitable tool for an industrial design system.

Number of NGV blades 36

Number of rotor blades 60

Rotor tip diameter 554 mm

Rotor tip clearance 0.5 mm

NGV-rotor spacing 0.346 NGV axial chord

Design speed 8434 RPM

NGV inlet total pressure p01 804505 Pa

NGV inlet total temperature T01 374.4 K

NGV outlet isentropic Mach number M2is 0.96

Table 5.1: Stage characteristics of Rig RT27a

The turbine stage used for this investigation is the well-known benchmark Rig

RT27a of the Oxford Osney Laboratory. This turbine stage represents a typical

HP stage of contemporary turbomachines and its characteristics are summarised

in table 5.1. The computed results are compared with measured Rig RT27a data

in order to achieve a better understanding of the unsteady effects and to assess

the applicability bounds of the linear methods for the analysis of unsteady 3D

NGV-rotor interaction.
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5.1.2 Experimental details

Rig RT27a was designed to provide steady and unsteady flow data for typical

turbine blade geometries at representative engine conditions. The turbine stage

was mounted in a transient flow turbine test facility based on an isentropic light

piston tunnel at the Osney laboratory, Oxford (Moss et al. 1997). The rotor blade

is a transonic shroudless design of 0.5 m tip diameter with an NGV-rotor spacing

of 0.346 NGV axial chord. Fig. 5.1 shows a meridional view of the stator-rotor

configuration. The rotor blade presents an evident tip clearance which has been set

to 0.05 cm (≈ 1% of rotor span). The rotor instrumentation, described by Moss et
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Figure 5.1: Meridional view of the RT27a turbine stage

al. (1997), consists of 78 flush-mounted miniature pressure transducers, “surface
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kulites”, and 12 “leading-edge” pitot transducers. The latter are protruded from

the leading-edge with a small bell-mouth to reduce sensitivity to incidence changes.

The kulite transducers are arranged at span-wise positions of 5, 10, 50, 90 and 95%

of annulus height; these sections will be referred to as root, mid-root, mid-height,

mid-tip and top.

Prior to a run, the rotor is accelerated to 6000 RPM, in vacuum, by an air motor.

Once this rotational speed is reached, a fast-acting annular valve opens and the

air (at suitable temperature and pressure generated by a free-sliding piston in

the pump tube) passes through the turbine stage for a duration of 200 ms. The

rotor accelerates to 9500 RPM and the data are recorded for some 17 ms while

the rotor passes through the design condition. Since the blade passing frequency

is approximately 5 kHz, the 17 ms acquisition time is sufficient to capture 85

wake passing cycles. The experimental data presented by by Moss et al. (1997),

have been assembled from over 400 signals captured during 120 tunnel runs. The

tolerance on the pressure measurements is ±1.75% with a 95% confidence limit.

This is equivalent to a Mach number accuracy of ±0.02 at a Mach number of 0.65.

5.2 Steady State Flow Analysis

The analysis of the steady-state flow-field for the coupled NGV-rotor configuration

is presented in this section. The flow is assumed to be fully turbulent and the high

Reynolds number version of the Spallart-Allmaras (1992) turbulence model is used

together with a slip boundary condition on the solid walls. The wall shear stresses

are evaluated using a generalized law of the wall as the one reported by White

(1991). Apart from predicting midspan pressure more accurately, 3D calculations

provide us with hub to tip distribution of the dependent variables and take the tip

losses into account. When the air is turned through a row of axial blades, the flow

far from the end walls, hub or casing, may often be considered as 2D. However near

the end walls, the inlet boundary layer flow contains span-wise velocity gradients,

and transverse velocities are produced once it is turned. The 2D flow is termed

the primary flow and the 3D effects near the end walls are called secondary flows.

Furthermore a turbomachinery rotor blade must have a small but finite clearance

relative to its surrounding casing. The clearance, as in the case of rotor RT27a, is

typically 1% of the blade’s span. However, the flow which leaks through this small

gap has a surprisingly large effect on the aerodynamics of the machine especially
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when the blade is relatively short. In order to predict secondary flow effects and

to take into account tip-leakages, the hub and tip sections must be treated as solid

walls and a tip clearance must be included in the computational mesh.

5.2.1 Computational mesh

The computational meshes for the NGV and rotor passages were generated inde-

pendently using the LEVMAP mesh generator described in chapter 2. These two

meshes were then assembled together for a coupled NGV-rotor steady-state calcu-

lation. The NGV outflow and rotor inflow are treated as two separate boundaries

and they are responsible for the interaction between the two domains via a mixing

layer process (Dawes 1990, Denton 1990). A 3D view of the grid is shown in Fig.

5.2a while Fig. 5.2b shows a meridional view of the blade surfaces together with

one periodic boundary. The points in the radial direction are clustered towards

the end walls because of the strong secondary flow expected in these regions. Also,

additional grid radial-levels are used in the rotor tip-gap region to capture the tip

leakage effects. Both grids have 48 points in the radial direction, the locations at

the NGV-outlet and rotor-inlet being identical (Fig. 5.2b). As shown in Fig. 5.3a,

42 of the radial grid levels, define the rotor geometry while the remaining six are

positioned in the tip-gap region. Fig. 5.3b shows the triangulation of the rotor tip

section.

Both the NGV and the rotor boundary layer regions are discretised by a twelve-

layer of O-type mesh formed by hexahedra elements. Such a resolution is sufficient

for a viscous computation which uses the law of the wall to evaluate the wall shear

stresses.

Fig. 5.4 shows the mid-height radial section of the computational mesh. The NGV

grid contains 4,717 points per radial level which yields a total of 226,416 points. The

inclusion of the NGV passage in the steady-state computation is mainly justified

by the need of (i) predicting a correct steady-state inlet conditions for the rotor

passage and (ii) the evaluation of the spatial non-uniformities at the NGV-outlet.

For these reason the NGV-grid is refined in the trailing-edge and outflow regions.

The rotor grid contains 338,244 points distributed in the following way: each one

of the six radial section in the tip-clearance region contains 7,850 points while

each one of the remaining 42 sections contains 6,932 points. The number of points

positioned in the rotor tip section of Fig. 5.3b is 918. Table 5.2 lists the number
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Figure 5.2: Computational mesh of RT27a turbine stage (564,660 points)



5.2- Steady state flow 119

 Imperial College 

 Centre of Vibration Engineering 
 XP3D V2.0 : Fri Mar 17, 2000, 19:31
 

 Solution from AU3D V6.0 

  MESH            

(a) Tip-gap radial mesh

 Imperial College 

 Centre of Vibration Engineering 
 XP3D V2.0 : Fri Mar 17, 2000, 19:32
 

 Solution from AU3D V6.0 

  MESH            

(b) Tip-section

Figure 5.3: Computational mesh at tip end wall of RT27a rotor blade

of points in each boundary of a rotor radial section.

The tip clearance grid is relatively coarse since the main interest is not to predict

accurately the structure of the tip-leakage flow, but only to take into account its

main effect on the hub-to-tip pressure distribution. Since the main parameters

which can affect the pressure distribution towards the tip are the size of the clear-

ance and the pressure jump across the blade, the tip-grid of Fig. 5.3 is considered

to be sufficient for the purposes of the current analysis.

Periodic boundary (axial direction) 126

Inflow boundary (tangential direction) 41

Outflow boundary (tangential direction) 43

Blade suction side (axial direction) 110

Blade pressure side (axial direction) 108

Table 5.2: Number of point on domain boundaries of RT27a rotor blade
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5.2.2 Boundary conditions and computational details

The boundary conditions, together with the rotor rotational speed, specify at which

point in the turbine stage characteristic the calculation is performed. The nominal

design condition has been chosen for this numerical analysis. The rotor rotational

speed is the one reported in table 5.1. The NGV inlet conditions are the following:

constant stagnation pressure (p01 in table 5.1), constant stagnation temperature

(T01 in table 5.1), flow direction without tangential component (αxθ = 0) and flow

angle in the x − r plane reported in Fig. 5.5a. The final boundary condition is

applied at the rotor outlet where the static pressure distribution of Fig 5.5b is

specified. A sequence of three agglomerated grid levels were generated for both the

NGV and the rotor domains so that a 4-grid W-cycle algorithm was used for the

steady state computations. Starting from free-stream conditions the computation

took around 300 multigrid cycles to converge. The calculation was performed on a

500 MHz DEC Alpha machine where the 300 multigrid cycles were completed in

about 8 hours. The average y+, which indicates the the resolution of the viscous

body fitted O-grid, was of around 150 while the maximum was ≈ 500. Both these

values are within the logaritmic part of the turbulent boundary layer thus justifying

the grid-resolution in this region.

5.2.3 Results of steady-state flow calculation

Fig. 5.6 shows the computed steady state static pressure on the rotor blade surface

together with particle traces. The pressure distribution on the pressure surface is,

in the main, 2D even though the particle traces show a significant radial component,

especially towards the tip region where the tip-clearance pressure jump tends to

drive the flow from the pressure side towards the suction side of the blade. The

3D effects are much more evident from the suction surface (Fig. 5.6b). The flow

behaves in a 2D way only in the middle section, while secondary flow effects are

very much evident towards both end walls. In particular, the separation line caused

by the suction side leg of the horseshoe vortex is clearly visible at the hub end wall.

The migration of the separation line towards mid-section is caused by the rotation

of the passage vortex. Such a separation line is also present at the tip end wall

but the flow pattern is more complicated. This is caused by the interaction of the

passage and tip-leakage vortices which result in counter-rotating flow structures.

Section 5.2.4 will present a more detailed discussion of these secondary flow effects.
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Fig. 5.7 shows a comparison of predicted and measured isentropic Mach number

blade distributions at mid-height section. The two experimental Mach number

distributions are calculated from the time-mean unsteady static pressures but using

two different values of the rotor-relative total pressures at the leading-edge: the

experimental and the computed values. The discrepancy between the two measured

curves can be considered to be an indicator of the experimental sensitivity to the

rotor relative inlet total pressure. Fig. 5.8 shows the comparison between the

measured and computed leading-edge pressure values along the radial direction. In

addition to the distribution obtained from the 3D steady-state computation, Fig.

5.7 reports the result of a quasi-3D calculation performed at mid-height section.

The true 3D result agrees, with the measurements, better in the forward part of

the blade suction surface while it overestimates the exit pressure. Fig. 5.9 shows a

comparison of the predicted isentropic Mach number blade distributions at 5, 10,

90 and 95% spans with the time-averaged measured data. The overall agreement

is reasonably good although some discrepancies are worth mentioning. As for the

mid-height blade distribution of Fig. 5.7, the computed results in the trailing-

edge region of the suction surface underestimate the measured isentropic Mach

number. The reasons for such discrepancies are not entirely clear. However, it

should be noted that experimental data represent averaged unsteady flow which,

under certain circumstances may be different from the true steady flow. This

is probably the case of regions where shock waves are present, i.e. towards the

trailing-edge region of the suction surface.

One feature that is common to Figs. 5.7 and 5.9 is that the pressure-side isentropic

Mach number distribution is almost the same for all span-wise positions, a feature

that is also evident from Fig. 5.6a. The suction-side results show considerable

deviations from the base 2D flow due to secondary and tip-leakage flows effects. Fig.

5.9a shows that forward position of the suction side is unloaded relative to midspan

values. At mid-root, the unloading in the forward position is less pronounced and

the results are closer to the midspan values. This trend of a increasing load on the

forward position continues all the way to the tip.

5.2.4 Secondary and tip-clearance flow

Three main vortices were identified in the rotor blade passage: the horseshoe vortex,

the passage vortex and the tip-leakage vortex. The formation of first two vortices is
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connected to the presence of velocity gradients near the end wall boundary layers

while the tip-leakage vortex is caused by the fast moving flow in the gap region.

The horseshoe vortex has two legs, namely the suction and pressure side legs. This

vortex is formed around the leading-edge of the blade at the end wall regions, in

the same way as around any blunt body with its axis perpendicular to the wall.

The high energy fluid, at the edge of the end wall boundary layer, flows away from

the leading-edge stagnation point, not only around the blade, but also downwards

because of the lower energy of the fluid below. When this high energy fluid reaches

the end wall, it flows upstream forming a saddle point where the upstream flow

separates form the surface. Fig. 5.10 shows the static pressure contours as well as

the particle traces at 1% span. The two separation lines caused by the pressure

and the suction leg of the horseshoe vortex can be seen clearly. The suction side

leg remains close to the blade and then, as indicated in Fig. 5.6, travels up the

suction surface, while the pressure side leg crosses the blade passage to the suction

side of the other blade. The detail is very complex, but the same main features

were noted by other researchers (Sieverding 1985, Gregory-Smith 1997).

The passage vortex is associated with the turning of the vorticity vector, and its

main effect occurs in the middle of the passage. Its rotation is in the same sense as

the pressure side leg of the horseshoe vortex and the two evolve and merge together.

Fig. 5.11 shows the particle traces at two consecutive axial planes. At an axial plane

15% chord downstream of the leading-edge, a recirculating flow pattern, formed by

the passage vortex and pressure side leg of the horseshoe vortex, is centered in the

middle of the passage. Within the blade passage the vortex is convected by its

own flow field from the pressure surface towards the suction surface as indicated

in Fig. 5.11b. The formation of the passage vortex is a natural consequence of the

interaction between the shear flow at the end wall and the turning of the blade.

The mainstream flow sets up a pressure gradient across the blade passage, from

the suction to the pressure surfaces, which can be approximated by the following

relationship:

∂p

∂r
=
ρu2

r

r
(5.1)

where r is the local radius of the turning of the flow caused by the blade passage.

The slower moving boundary layer fluid is subjected to this same pressure gradients,

but since the velocity ur in the boundary layer is smaller than the mainstream one,
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the radius of curvature r must be smaller. Thus in a 3D blade row, the flow on the

end wall is directed from pressure to suction surface as shown in Fig. 5.10, and to

preserve continuity, there is a back flow further away from the end wall, leading to

the vortical flow shown in Fig. 5.11.

The flow at the tip is somewhat more complicated. The orifice formed by the tip

gap experiences essentially the same pressure difference as that across the blade.

Fig. 5.12 shows the static pressure contours as well as the particle traces for a radial

section inside the tip-gap. This pressure ratio across the gap accelerates the flow up

to supersonic conditions. The clearance flow then emerges from the gap with very

high velocity at an oblique angle relative to the passage flow. The resulting strong

interaction with the passage flow, including the developing passage vortex of Fig.

5.12, causes the leakage flow to roll up into a vortex known as tip-leakage vortex.

Such a vortex results in a structure which has a vorticity in direction to that of the

passage vortex. Yamamoto (1988) investigated the interaction mechanism between

tip leakage flow and the passage vortex in some detail. At the trailing-edge, the

leakage flow pushes the passage vortex away from the suction surface, a feature that

is evident from Fig. 5.12. Also Yamamoto (1988) suggests that the interaction

between the two vortex structures results in an elongation and distortion of the

passage vortex. In particular, the leakage flow pushes the secondary flow towards

midspan. This seems to be in an agreement with what is shown in Fig. 5.6.

Another important feature of the tip-clearance flow is the formation of a dividing

stream surface between the fluid which is swept into the gap and that which is

driven across the passage in the usual way. Such a stream surface is evident in Fig.

5.12 where it lies at about one fifth of the blade pitch from the pressure surface.

The exact position of the division stream surface is a function of the clearance and

probably other parameters such as the blade loading (Sjolander & Amrud 1987).

Fig. 5.12 also shows the absence of the stagnation point due to the presence of the

clearance. On the other hand, the two separation lines of the horseshoe vortex are

still present. For larger clearances, Sjolander & Amrud (1987) show that the tip

horseshoe vortex disappears.



5.3- Rotor unsteady flow analysis 124

5.3 Rotor Unsteady Flow Analysis

In this section unsteady results obtained using the linear frequency domain ap-

proach are presented. First, the sources of unsteadiness obtained from the NGV

outlet steady-state solution are discussed. Potential- and vortical-rotor interactions

were evaluated for the first two tangential Fourier modes and the superimposed

results compared with the available experimental data. Sections 5.3.3 and 5.3.4

present a physical interpretation of the two type unsteady interactions, i.e. poten-

tial and vortical. As reported in Appendix C, there is a third type of unsteady

interaction caused by the entropy variation across the NGV wake. This interaction

produces unsteady pressure variations which are of one order of magnitude less

then those obtained from the potential and vortical NGV non-uniformities. For

this reason the entropy mode is included in the vortical mode, also associated with

the NGV-wake. This means that the total unsteady flow-filed in the rotor passage

is given by the superimposition of the potential and vortical modes.

5.3.1 Sources of unsteadiness

The sources of unsteadiness in the rotor passage are represented by the steady-

state tangential non-uniformities at the outflow boundaries of the stator blade.

Such non-uniformities, which can be assumed to be approximately steady in the

stator frame of reference, are unsteady in the rotor frame of reference since the

rotor is moving through them. Fig. 5.13 shows the computed steady-state solution

at the NGV outlet. The static pressure distribution shows a weak shock wave

towards the hub section where the average outlet Mach number is just above unity.

The Mach number contours in Fig. 5.13b show the potential field associated with

the static pressure contours but the wake profile is not evident apart from the hub

section of the blade where the wake seems to have a quite strong radial variation.

The total pressure contours, on the other hand, clearly exhibit the wake structure

which appears to run almost radially, with the exception of the root region. The

rotor blades move through the steady NGV-outlet from left to right of Fig. 5.13 and

they see the spatial non-uniformities as unsteady perturbations. Such spatial non-

uniformities are periodic in the tangential coordinate and they can be decomposed

into Fourier components for each radial section. The unsteady velocities contain

two parts: a rotational (vortical) part, associated with the NGV wake, and an
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irrotational (potential) part associated with pressure variations. In the same way,

the unsteady density contains two parts: an entropic part associated with the

NGV wake and an irrotational (potential) part, again associated with the pressure

variation. Such a grouping means that each Fourier mode of the steady flow solution

at the NGV outlet can be seen as summation of three different modes: vortical,

potential and entropic. Appendix C shows how to calculate such modes for each

Fourier harmonic using Goldstein’s splitting theorem and the linearised acoustic

equations.

The vortical component of the spatial non-uniformities is associated with velocity

variations with zero divergence and hence with the velocity defect in the NGV wake.

Fig. 5.14a shows the first two Fourier components of the absolute velocity variations

associated with the vortical component. The first harmonic, usually referred as

‘gust’ (Manwaring & Wisler 1993), clearly shows the three-dimensionality of the

NGV-wake towards the root section. Very large velocity deficit occurs half a cycle

or so earlier that the mid-height wake. Such wake inclination was also measured by

Moss et al. (1997). Fig. 5.14b shows the pressure perturbation which is associated

only with the potential field of the NGV outlet. Neither Fourier component has

strong 3D features. The first two harmonics of the density perturbation associated

with the entropic mode are shown in Fig. 5.14c. Fig. 5.15 shows the vortical and

potential components of the absolute velocity non-uniformities at the NGV outlet.

These two plots have been obtained by a summation of the first twenty vortical

and potential Fourier components.

5.3.2 Comparison with measured data

The computed unsteady flow results, obtained from the superimposition of the

potential and vortical calculations, will now be compared with the experimental

data of Moss et al. (1997). The comparison is made for three different span-

wise positions, namely mid-root, mid-height and tip. The remaining two sections,

root and mid-tip, are not considered because of the unavailability of experimental

data for the rotor suction surface. Fig. 5.16 shows the amplitude and the phase

angle of the first Fourier component of the unsteady pressure for these three radial

sections. A striking feature of Fig. 5.16 is that the pressure amplitude on the

pressure surface is overpredicted for all three sections. This significant discrepancy

is more evident in the mid-root section where shape of the predicted amplitude
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shows a maximum at mid-chord whereas the measured data indicate a minimum.

On the other hand, at mid-height and tip, the shape of the predicted amplitude

is similar to the measured ones even though there is a factor of two discrepancy.

As it will be discussed in section 5.4, the reason of such discrepancy cannot be

attributed to a possible non-linear behaviour. Unlike the amplitude, the phase

angle on the pressure side is in good agreement especially at mid-height and tip

sections. The suction side predictions give a good representation, both in term of

amplitude and phase angle. At mid-height, the suction side prediction has some

discrepancies with the measured data in the region around x/cx ≈ 0.75 where the

measured and computed data are out of phase and of different amplitudes.

Fig. 5.17 shows the comparison between the predicted and measured data for

the second Fourier component of the unsteady pressure. Unlikely the first Fourier

component, and perhaps very surprisingly, the overall agreement is very good for

the all three sections both in terms of amplitude and phase angle.

5.3.3 Vortical-flow interaction effects

As discussed earlier the vortical flow non-uniformities at the NGV outlet are asso-

ciated with a rotational velocity perturbation with zero divergence. Such a vortical

flow component at the NGV outlet is shown in Fig. 5.14a for the first two tangen-

tial Fourier modes. Vortical-flow interaction, also labelled wake-rotor interaction,

has been studied and interpreted by several authors (Hodson 1985, Giles 1987,

Korakianitis 1992a, 1992b, 1993) and it is now fairly well understood. Before

analysing the hub-to-tip distribution of the pressure amplitude, a brief description

of the wake-rotor interaction at mid-height section is given.

Figs. 5.18 and 5.19 show the dimensionless absolute velocity and pressure fluctu-

ations together with the unsteady particle traces during one blade passing cycle

in the rotor passage. The wakes are first bent by the potential flow field of the

rotor as shown in Fig. 5.18a. When the leading-edge in the rotor stagnation re-

gion interacts with the lower momentum fluid in the wake, unsteady, recirculating

flow patterns are established as shown in Fig. 5.18a. These recirculating flow

patterns, generated as the wake is being cut, result in a counterclockwise rotat-

ing vortex downstream the wake centerline (indicated with a dotted line) and in



5.3- Rotor unsteady flow analysis 127

a clockwise vortex upstream the centerline (Fig. 5.18a). The upstream unsteady

vortex is associated with a local increase of pressure while the downstream coun-

terclockwise flow pattern causes a local decrease in pressure. After the wake is

cut, a segment of wake is produced in the rotor passage and the two ends of the

segment travel at local steady fluid speed. Since the flow is faster at the suction

side, the wake centerline begins a counterclockwise rotation as it moves through

the rotor passage. At the same time, the lower momentum fluid moves from the

wake end near the pressure side to the wake end near the suction side, causing a

thicker wake in the suction side and a thinner one in the pressure side (this is due

to the direction of rotation of the two vortices). Broadly speaking, as the wake

centerline moves downstream in the rotor passage, its influence in the unsteady

pressure fluctuation tends to be more pronounced on the suction side of the blade.

This is evident in the blade crown were the unsteady pressure amplitudes reach

their maximum. As the recirculating flow patterns moves downstream, the wake

is sheared, distorted and enlarged while the amplitude of the unsteady pressure is

decreased and its region of influence increased. Near the trailing-edge of the blade,

there is an expansion region on the suction side which causes a local increase in

pressure amplitude across the the line of the trailing-edges. This is also evident

from Fig. 5.16b in the region 0.5 < x/cx < 0.75.

Fig. 5.20a shows the unsteady pressure amplitude computed by using the first

Fourier harmonic of vortical flow component at the NGV outlet. The pressure

surface exhibits more 3D features than the suction surface. The amplitude of

disturbances on the pressure surface is higher towards the forward part of the root

section. This because of the stronger vortical field indicated in Fig. 5.14a. On the

other hand the resistance of the wake effect is reduced if compared with mid-height

and tip sections (blue region at the root trailing-edge in Fig. 5.20a). The reason

for this reduced resistance can be tracked to the lower wake exit angle at root

section. Infact Korakianitis (1993) showed that the wakes from lower stator exit

angles act for a shorter part of the blade passing cycle. On the suction surface, the

perturbations reach their peak on the crown of the blade as shown in Fig. 5.20b.

In addition, a region of high pressure amplitude is noticeable in the region were

the suction side separation line of the horseshoe vortex is located (see Fig. 5.6b).

The propagative aspect of the vortical flow interaction can be easily seen from

an ispection of the unsteady pressure animation. The perturbation starts at the
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leading-edge and then propagates towards the rotor outlet with the steady-state

local fluid velocity.

The unsteady pressure amplitude caused by the second Fourier component of the

NGV-outlet vortical flow non-uniformities of Fig. 5.14b is shown in Fig. 5.21.

The 3D effects are much stronger than those due to the the first Fourier harmonic,

especially in the pressure surface where the pressure amplitude distribution differs

significantly from Fig. 5.20a. In contrast, the suction surface disturbances have a

qualitatively similar behaviour to Fig. 5.20b.

5.3.4 Potential-flow interaction effects

An analysis of the temporal variation of the potential-flow interaction is given in

this section. The potential flow at the NGV outlet is shown in Fig. 5.14b for the

first two harmonics. Such a potential flow does not show particoular 3D features

although its amplitude is higher towards the root section. Fig. 5.22 shows the

predicted amplitude of the unsteady pressure distribution on the rotor blade due

to the first Fourier component of the potential flow.

In the suction side, the unsteady pressure exhibits 3D effects across the suction side

leg of the horseshoe vortex. Fig. 5.22b shows that the unsteadiness is much higher

towards the leading-edge and that there is an exponential decay downstream. This

is compatible with the potential flow theory illustrated in appendix C. Such a

decay rate can also be seen from Fig. 5.16.

The unsteady pressure perturbation on the pressure surface exhibits a 2D behaviour

and it results in a ‘stationary’ wave centered at the middle of the blade. Such a

feature can be seen from Fig.5.16 where the maximum amplitude is located at

x/cx ≈ −0.75 with a phase nearly constant along the axial direction. Thus, on the

pressure side, the potential-flow unsteadiness does not decay exponentially but, on

the contrary, seems to follow a different behaviour.

With the help of the unsteady pressure animation, it is possible to distinguish two

separate regions for the potential flow interaction. As the rotor passage moves,

it cut the potential flow field in an upstream region attached to the NGV outlet

and in a rotor passage region centered on the pressure surface. The upstream

interaction, which decays exponentially downstream, is responsible for the high

perturbations at the leading-edge of the blade and it does not interact with the
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rotor steady pressure field. In the region inside the rotor passage, the prescribed

potential flow interaction from the stator outlet and the potential flow field of

the rotor itself influence each other. Korakianitis (1992a, 1992b, 1993) showed

that this interaction is strongly influenced by the stator-to-rotor pitch ratio and,

consequently, by the inter-blade phase angle as reported in Appendix C. For equal

rotor and stator pitches, the inter-blade phase angle becomes 2π. In this scenario,

the potential flow interaction affects only the leading-edge of the blade while for a

larger ratio (and smaller inter-blade phase angle) the interaction affects the whole

of the rotor assembley.

Although the pressure variation due to the potential-flow interaction is a pres-

sure disturbance entering the rotor passages, this pressure disturbance does not

“propagate” downstream the rotor blade at the sonic or any other velocity. The

potential-flow disturbance is a pressure field which is located in the traverse of the

rotor assebley; it is affected by the potential-flow interaction of the rotor itself,

but it does not propagate. The interaction between the pressure disturbance and

the rotor pressure field occurs in the middle of the passage and it is located in the

pressure side of the blade.

The unsteady pressure perturbations generated by the second Fourier component

of the potential flow field of the NGV outlet is shown in Fig. 5.23. The resulting

potential flow interaction shows a large 3D effect when compared with the distri-

bution in Fig. 5.22. The unsteady pressure behaviour, on the other hand, is very

similar to that previously discussed. The disturbance on the suction side decays

more rapidly than the first harmonic and this is in perfect agreement with the po-

tential flow theory. The interaction between the disturbance and the rotor pressure

field is again visible in the pressure surface of the blade where a pressure pulsation

is still present. However such pulsation on the pressure surface seems to possess

a propagative behaviour in the spanwise direction. From the unsteady pressure

animation, it is evident that the interaction starts at the blade root, where the

inlet disturbance is higher (Fig. 5.23a), and propagates towards the tip section

growing in amplitude.

A possible cause of this propagative 3D effect can be attributed to the presence of

centrifugal and Coriolis forces created by the blade rotation. It has been demon-

strated by several authors (Kerrebrock 1977, Atassi & Golubev 1997) that, for

non-uniform mean flow, such forces deflect the fluid motion and couple together
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the potential and vortical modes. Becaise of such coumpling neither convected vor-

tical nor irrotational acoustic disturbances exist. Instead, (i) nearly-convected or

vorticity-dominated modal disturbances, that contains pressure, and (ii) acoustic or

pressure-dominated modal disturbances, that contain vorticity, occur (Montgomery

& Verdon 1997a).

5.3.5 Summary of the main findings

The unsteady pressure on a 3D HP turbine rotor blade due to potential-flow and

viscous-wake interaction from the upstream NGV was computed using a linear flow

representation. The potential-flow and the viscous-wake from the upstream NGV

are modelled as inlet distorsions at the rotor-inlet boundary. The superimposed

solutions for the first (blade passing frequency) and second Fourier modes were

compared with available experimental data. The overall agreement was considered

to be sadisfactory although the pressure side perturbations due to the first Fourier

mode were overestimated. The main conclusions of this unsteady analysis can be

summarised as follow:

• The wake-rotor interaction is caracterised by the cutting of the NGV wake by

the rotor blade. Such a process generates a wake segment in the rotor passage

which interact with the potential flow-field of the rotor itself. The vortical

pattern upstream of the wake centerline generates an increase in local pressure

while the the vortical pattern downstream of the wake centerline generates a

decrease in local pressure.

• At mid-heigh section, where the flow is quasi 2D, the perturbations due to

wake-rotor interaction are higher at the crown of the blade. This is true for

both the first and second Fourier component.

• The perturbation caused by vortical-rotor propagates from inlet towards the

rotor outlet with the steady-state local fluid velocity.

• Two separate regions for the potential-flow interaction can be distinguished

in the rotor domain. The first region is attached to the stator outlet and

interacts with the rotor leading-edge. Such interaction is strong but decays

exponentially dowstream. The second region is located in the rotor passage

and it is the consequence of the interaction between the potential-flow at the
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rotor inlet and the potential flow field of the rotor itself. Such iteraction

results in a ‘stationary’ pressure wave centered at the middle of the rotor

pressure surface.

• Such a pressure pulsation on the blade passage is ’stationary’ only for the

first Fourier component. The second Fourier components of the potential-

flow mode exhibits a propagative radial behaviour although for a given radial

section it still results in a ’stationary’ pulsation. This 3D behaviour can

be explaned by the presence of centrifugal and Coriolis forces which couple

together vortical and acoustic modes.

• The importance of including both potential and vortical disturbances is clearly

demonstrated. Strong 3D effects for both interactions are positioned across

the suction side leg of the horseshoe vortex.

5.4 Linear versus Non-linear Analysis

An evaluation of whether non linearity could be responsible for discrepancies be-

tween the linear predicted results and measured data is presented in this section.

A non-linear time-marching solution technique was employed to calculate the un-

steady flow field in a coupled stator-rotor configuration. The stator to rotor pitch

ratio is 3:5 thus three stator blades and five rotor blades have to be included in

the computational domain. Because of the large number of point needed for a 3D

calculation, the comparison beween linearised and non-linear methods was made

using a quasi-3D version of the code at mid-height section.

5.4.1 Analysis at mid-height section

Fig. 5.24 shows the predicted steady-state Mach number contours, using a quasi-

3D representation, together with the Kulite sensor position. The isentropic Mach

number blade distribution is compared with the time-averaged experimental data

and the 3D calculation in Fig. 5.7. The non-linear time marching simulation for a

coupled sistem of 3 NGV blades and 5 rotor blades run for eight blade frequency

cicles before reaching a periodic solution suitable for comparison with the linear

prediction. The unsteady pressure time-hystory on the rotor surface has been
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Fourier decomposed and the first three modes were considere. Higher Fourier com-

ponents are strongly affected by the artificial diffusion/dispersion of the numerical

algorithm (Sbardella 1997).

Figs. 5.25, 5.26 and 5.27 compare the results obtained using the linear and non-

linear methods with the experimental data for the first three Fourier modes. For

the first Fourier mode the discrepancies between linear and non-linear results are

located in the leading-edge region of the blade. Such mismatch is maximum for

x ≈ 0.35 were linear perturbation is 50% the non-linear one. In the pressure

side and in the second part of the suction side the discrepancies are within a

10% limit. On the other hand, the phase of the unsteady pressure perturbation

is nearly the same for the linear and non-linear representations. The comparison

between the linear and non-linear second Fourier component of Fig. 5.26 indicates

an even better agreement between the two representations. The error in amplitude

prediction is well within a 10/% limit. The phase is also in good agreement. The

third Fourier component of the linear result underestimates by a factor of 50% the

non-linear results as shown in of Fig. 5.27. The phase still presents an overall

good agreement. This discrepancy could be a direct consequence of two non-linear

effects: (i) the steady-state NGV outlet solution underestimate the amplitude, for

this particoular Fourier mode, of the time-averaged non-linear solution. This is

evident in the leading-edge part (0 < x/cx < 0.3) of rotor suction side of Fig.

5.27a. Infact, in this region the non-linear amplitude is higher then the linear one

by a constant factor of ≈ 1.75. (ii) Another cause of these discrepancies can be

recover from the energy transfer between different Fourier modes. Although Fig.

5.27a evidentiates such non-linear features, it should be noted that the amplitude

of this perturbancies is much lower than the those obtained for the first two Fourier

modes of Figs. 5.25 and 5.26.

5.4.2 Reconstructed wave-forms

In this section the reconstructed wave forms over two blade passing cycles are

reported. The waves are obtained by an inverse Fourier transform of the first three

modes presented in Figs 5.25, 5.26 and 5.27. The position on the rotor blade surface

of the various wave-forms is shown in Fig. 5.24
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5.5 Concluding Remarks

An extended analysis of the steady and unsteady aerodynamics in a rotor passage

typical of high-pressure turbine stage of contemporary turbomachines has been

presented. The main highlight of this study are summarised as follow:

• A steady state 3D calculation for a coupled NGV-rotor configuration is es-

sential in order to correctly predict the rotor primary and secondary flow as

well as to evaluate the flow non-uniformities at the NGV outlet. A good

representations of such non-uniformities is compulsory for the evaluation of

the aerodinamic forcing functions which need to be imposed at the rotor in-

let in a linear unsteady calculation. For this reson, the use of steady-state

non-reflecting boundary conditions at the NGV outlet/rotor inlet boundaries

is essential.

• Both vortical and potential interactions are essential for a complete unsteady

flow representation. The vortical interaction is strong in the crown of the

blade while the potential one in the leading-edge region of the blade.

• The potential-flow interactions reveals 3D effects which can be justified by

the coupling of vortical-acoustic modes due to the presence of centrifugal and

Coriolis forces in the rotor passage. This coupling is more evident in the

second Fourier mode.

• Non linear effect are minimal for the first two Fourier components thus jus-

tifying a liner unsteady approach.

• The linear unsteady approach offeres great advantages over its non-liner coun-

terpart: (i) much more efficient in term of CPU speed and storage. (ii) Much

faster pre-processing since the linear calculations are performed using a single

passage mesh while non-linear methods require the assembling of multiblade-

multirow meshes1. (iii) Much faster post-processing analysis since the com-

puted data represents the complex amplitude of the unsteady perturbation

for a given Fourier mode.

1This advantage is even more enfatised when multigrid-solver are used



5.5- Concluding remarks 134

 Imperial College 

 Centre of Vibration Engineering 
 XP3D V2.0 : Fri Mar 17, 2000, 19:24
 

 Solution from AU3D V6.0 

  MESH            

Figure 5.4: Computational mesh at mid-height section of RT27a turbine stage
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(b) Mid-root section
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(c) Mid-tip section
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(d) Tip section

Figure 5.9: RT27a rotor blade: isentropic steady-state Mach number distribution

at different span-wise positions
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Figure 5.10: Steady state pressure contours p
p01

and particle traces at 1% span of

RT27a rotor blade
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Figure 5.11: Pressure contours p
p01

and particle traces at different rθ − r planes in

the RT27a rotor passage
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Figure 5.12: Steady state pressure contours p
p01

and particle traces inside the RT27a

rotor tip-gap region
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(a) Dimensionless static pressure

(b) Mach number

(c) Dimensionless total pressure

Figure 5.13: Steady state solution at the RT27a NGV outlet boundary (2 passages)
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(a) Vortical component of dimensionless absolute velocity

(b) Dimensionless pressure

(c) Entropic component of dimensionless density

Figure 5.14: First (left) and second (right) Fourier components of spatial non-

uniformities of RT27a NGV outlet solution (1 passage)
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(a) Vortical component (b) Potential component

Figure 5.15: Vortical and potential components of dimensionless absolute velocity

variation at RT27a NGV outlet (reconstructed using first twenty harmonics)
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(a) Mid-root section (10% span)
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(b) Mid-height section (50% span)
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(c) tip section (95% span)

Figure 5.16: Amplitude (left) and Phase (right) of first Fourier component of un-

steady pressure p/p0 in the RT27a rotor blade. Potential mode (blue), vortical

mode (red), superposed (black) and measured (*).
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(a) Mid-root section (10% span)
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(b) Mid-height section (50% span)
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Figure 5.17: Amplitude (left) and Phase (right) of second Fourier component of

unsteady pressure p/p0 in the RT27a rotor blade. Potential mode (blue), vortical

mode (red) and superposed (black), measured (stars).
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Figure 5.18: Vortical-flow interaction in the RT27a rotor passage at mid-height

section (first Fourier component). Unsteady dimensionless absolute velocity fluctu-

ations (left) and unsteady particle traces superimposed on dimensionless unsteady

pressure fluctuations (right)
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Figure 5.19: Vortical-flow interaction in the RT27a rotor passage at mid-height sec-

tion (first Fourier component) continued. Unsteady dimensionless absolute velocity

fluctuations (left) and unsteady particle traces superimposed on dimensionless un-

steady pressure fluctuations (right)
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Figure 5.20: Unsteady pressure on RT27a rotor blade due to Wake-rotor interaction

(first Fourier component)
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Figure 5.21: Unsteady pressure on RT27a rotor blade due to Wake-rotor interaction

(second Fourier component)
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Figure 5.22: Unsteady pressure on RT27a rotor blade due to potential flow inter-

action (first Fourier component)
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Figure 5.23: Unsteady pressure on RT27a rotor blade due to potential flow inter-

action (second Fourier component)
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Figure 5.24: Steady-state Mach number contours on RT27a rotor mid-section and

Kulite sensor position
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Figure 5.25: RT27a rotor blade mid-section. First Fourier component of dimen-

sionaless unsteady pressure. Linear method (blue), non-linear method (red) and

measured data (stars).
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Figure 5.26: RT27a rotor blade mid-section. Second Fourier component of dimen-

sionless unsteady pressure. Linear method (blue), non-linear method (red) and

measured data (stars).
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Figure 5.27: RT27a rotor blade mid-section. Third Fourier component of dimen-

sionless unsteady pressure. Linear method (blue), non-linear method (red) and

measured data (stars).
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(f) K006: x/c = 0.518 suction side

Figure 5.28: RT27A rotor blade mid-section. Comparison of unsteady pressure

between linear results (blue), nonlinear results (red) and measured data (black)
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(f) K015: x/c = 0.975 suction side

Figure 5.29: RT27A rotor blade mid-section (continued 1). Comparison of unsteady

pressure between linear results (blue), nonlinear results (red) and measured data

(black)
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(a) KA01: x/c = 0.055 pressure side

0 0.5 1 1.5 2
−0.05

0

0.05

Stator pitches
(p

−
p

a
v)/

p
0

(b) KA02: x/c = 0.143 pressure side

0 0.5 1 1.5 2
−0.05

0

0.05

Stator pitches

(p
−

p
a
v)/

p
0

(c) KA04: x/c = 0.421 pressure side

0 0.5 1 1.5 2
−0.05

0

0.05

Stator pitches

(p
−

p
a
v)/

p
0
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(f) KA08: x/c = 0.943 pressure side

Figure 5.30: RT27A rotor blade mid-section (continued 2). Comparison of unsteady

pressure between linear results (blue), nonlinear results (red) and measured data

(black)



Chapter 6

Conclusions and Raccomendations

for Further Work

A unified flow solver for the solution of the steady-state, non-linear time-marching

and linearised unsteady Favre averaged Navier-Stokes equations on 2D and 3D tur-

bomachinery passages has been presented, analysed and implemented. The spatial

discretisation has been obtained using a finite volume scheme on mixed element

meshes, consisting of triangles and quadrilaterals in 2D, and of tetrahedra, pyra-

mids, triangular prisms and hexahedra in 3D. The resulting finite volume method

is a node centered edge-based algorithm which is applied in a uniform way to all

element types. An important feature of the method is the derivation of an edge-

based coefficient for the discretisation of the Laplacian operator, which results in a

nearest neighbour stencils. The time relaxation for both the steady state and the

linearised unsteady version of the code has been obtained using the same precon-

ditioned Runge Kutta time stepping algorithm. This multistage time-integration

technique has been used as the smoother for a full approximation storage agglom-

eration multigrid method. For non-linear unsteady aerodynamics a dual time step-

ping technique has been implemented. The scheme is fully implicit and uses the

same preconditioned multigrid algorithm developed for steady-state predictions, in

order to iteratively invert the equations at each physical time step. The numerical

procedure has been tested and compared with available analytical and experimental

data in order to assess the validity, the accuracy and the efficiency of the method.

The three different numerical flow representations have been used for a detailed

computational analysis of a stator-rotor interaction in a typical high pressure tur-

bine stage. Steady state nd unsteady results have been compared with the ex-
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perimental data obtained at Osney Laboratory. Also comparison between linear

and non-linear unsteady results has been reported in order to assess the range of

applicability of the linear method.

Highlights of the numerical procedure

(i) The semi-structured mesh generator presented in Chapter 2 combines together

the advantages of both structured and unstructured grids. Particular feature of

the blade passage, such as leading- and trailing-edges, wake region are discretized

without generating superfluous points. Moreover complex geometric feature such

as tip-gap are handled in a straightforward way.

(ii) The use of hybrid grids improves standard unstructured schemes in terms of ac-

curacy, speed and storage. Accuracy is improved by using quadrilateral/hexahedral

elements in regions where highly stretched cells are necessessary to resolve steep

directional gradients (i.e. boundary layer regions). In these regions, standard trian-

gular/tetrahedral elements would produce angles which are virtually zero. In such

situations a finite-volume discretisation may suffer an accuracy degradation due to

the irregular shape of the resulting median-dual control volume. Another advan-

tage of hybrid grids, over standard unstructured grids, is a decreased cost of the

discretisation itself. For a given distribution of vertices, a tetrahedral mesh discreti-

sation is roughly twice as expensive to evaluate as a hexahedral mesh discretisation.

A decreased number of edges in the mesh is the reason for this difference.

(iii) A further advantage of the hybrid grid solver presented is its flexibility in han-

dling structured grids, block structured grids, unstructured grids or combination

of thereof without any modifications.

(iv) The viscous fluxes are split into two components: Laplacian terms and mixed

derivative terms. The former terms contain Laplacian operators only and they are

discretized using a side-data Laplacian weight which results in a nearest neighbour

stencils. The mixed derivative terms are evaluated from the gradient informations

and thus their discretisation does not result in a compact stencil. The compact

stencil of the Laplacian terms is of paramount importance in the boundary layer

region, avoiding even-odd decoupling and allowing a stronger diagonal dominance
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in the preconditioner matrix employed in the relaxation algorithm.

(v) The time relaxation algorithm uses an agglomeration multigrid method. The

coarse grid levels are constructed automatically from the fine grid by agglomerating

fine grid control volumes together. Since the coarse grid control volumes may

have arbitrary polygonal shapes, the type of elements constituting the fine grid is

irrelevant. In this way the discrete equations on coarse grid levels are assembled

automatically without the explicit creation of a coarse grid.

(vi) The multigrid smoother consists of a preconditioned point- or line-Jacobi

Runge Kutta relaxation algorithm, which guarantees efficient damping of high fre-

quency error modes on highly stretched grids. The line-Jacobi preconditioner is

used for viscous flow calculation which use a no-slip conditions at solid walls. The

point-Jacobi preconditioner is used for calculation which use a flow-tangency con-

dition at solid walls.

Importance of linearised unsteady viscous representations

(i) A linearised unsteady Navier-Stokes representations offers the possibility of pre-

dicting unsteady flows at off-design conditions where viscous effects are not limited

to the boundary layer.

(ii) Steady-state viscous effects are often important even at design conditions. In

fact, Navier-Stokes simulations are used in order to predict secondary flow effects,

correct mass flow in compressor passages where the adverse pressure gradient cause

a thicker boundary layer, tip-leakage flow, losses caused by the trailing-edge base

flow in turbine blades, etc. Using a linearised unsteady Navier-Stokes representa-

tions means that the same computational mesh can be used for both calculating

the steady base flow and the unsteady perturbations. Interpolation of the steady-

state unknown from viscous grids into inviscid ones are avoided and no additional

numerical smoothing is needed.

(iii) The linearisation of the turbulence model may play an important role in situa-

tion were viscous effect are not confined to the boundary layer region. When there

are not such effects, the frozen turbulence approach should produce very similar
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results.

(iv) When a steady viscous flow calculation, which uses the law of the wall in order

to compute the wall shear stresses, is performed, the issue a linearisation of the

wall function arises. Such a linearisation has been attempted during the research

project. However, the results obtained using a linearised wall function and the

ones obtained neglecting unsteady wall shear stresses were similar. Moreover the

linearisation of the wall function required the use of the linearised turbulence mode

since wall shear stresses and eddy viscosity are related in the Spalart Allmaras

model. For this reason the unsteady wall shear stresses were neglected with no

need of a linearised law of the wall.

Applicability of linear methods for forced response prediction

To establish boundaries, which effectively define when linear methods should pro-

duce accurate results, is not a simple task. This is mainly due to the large number

of parameters which influence the unsteady flows caused by relative blade motion.

Comparisons between linear and non-linear results should be made for all type

of flow regimes as well as different size of stator-rotor axial spacing and different

stator-to-rotor pitch ratios. Also, 3D effects need to be explored in more details.

From the results obtained in Chapter 5, the following conclusion are drawn.

(ii) The wake-rotor interaction is strong in the crown of the blade. In this region,

the computed results show that non-linearities are negligible.

(i) High unsteady pressure fluctuations, mainly caused by the upstream potential

flow field, are located at the leading-edge of the blade. In this region non-linearities

may play an important role even though the linearised results follow a correct trend.

Furthermore, such discrepancies are more evident for the blade passing frequency

then higher mode number. For this reason, the linear method should still produce

meaningful results for interactions in where shock waves are moving in the region

between the stator and rotor bladerows1.

1The presence of shock waves increase the amplitude of Fourier modes with higher frequencies

then the blade passing frequency.
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(iii) Localised non-linearities are located in region where the steady-state flow dif-

fers from the time-average flow. This is often the case when non-linear features,

such as shock waves, are present.

(iv) High unsteady pressure fluctuations are placed across the suction side legs of

the horseshoe vortex at both hub and tip end walls. These suction side legs, of

the horseshoe vortex, travel from the end walls towards mid section because of

the rotation of the passage vortecies thus unsteadiness present a pronounce 3D

behaviour.

Further Work

(i) The preconditioned agglomeration multigrid needs to be improved in order to

enhance both performance and robustness. A more accurate prolongation operator

need to be developed. This task is non-trivial because of the absence of an under-

lying grid. The preconditioner may cause some instabilities at stagnation points,

where large variations of the flow angle appear at significant velocity values. This

loss of robustness can be attributed to a flow-angle sensitivity thus improvement

in this direction should be made.

(ii) Further testing of the linearised unsteady method needs to be undertaken for

real 3D geometries. In addition the inclusion of the quadratic source terms (QST)

(Giles 1992) in the linearised frequency-domain equations should be implemented.

The magnitude of such terms is a quadratic function of the level of unsteadiness.

In this way after a first linearised calculation, the unsteadiness are used to evaluate

the QST which are then used as source terms for a second linearised analysis. Such

method should take into account for the differences between the steady-state flow

and the time-average flow.
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Appendix A

Non-Dimensional Variables

All the physical quantities reported in the thesis are considered in their dimension-

less form. This Appendix illustrates how these dimensionless quantity are evalu-

ated. The process start defining three reference values for the pressure, temperature

and length scale:

pref [Pa]

Tref [K]

lref [m]

(A.1)

The dimensionless pressure and temperature are calculated from their dimension-

alised and reference counterparts as:

p =
pdim

pref

(A.2)

T =
Tdim

Tref

(A.3)

Density, velocity and time are non-dimensionalised using the following reference

quantities:

ρref =
pref

RTref

[Kg/m3]

vref =
√
RTref [m/s] (A.4)

(A.5)

tref =
lref√
RTref

[s]
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In (A.5) R indicates the gas constant (R = 287 [m2/s2K]). The dimensionless

perfect gas relations become:

p = ρT (A.6)

c =
√
γT =

√
γ
p

ρ
(A.7)

The reduced frequency ω is obtained from the dimensional frequency f [Hz] via

the following relation:

ω = 2πftref (A.8)

The reference Reynolds number is given by

Re =
lrefρrefvref

µref

(A.9)

where µref is evaluated from Tref using the Sutherland’s formula

µref =
1.45T 3/2

ref

Tref + 110
10−6 (A.10)

The dimensionless dynamic viscosity is evaluated by:

µ =
Tref + 110

TrefT + 110
T 3/2 (A.11)



Appendix B

Spalart Allmaras Turbulence

Model

Turbulence modeling, together with grid generation and algorithm development, is

one of the three key elements in CFD. However, while for grid generation and algo-

rithm development very precise mathematical theories have evolved, mathematical

models that approximate the physical behaviour of turbulent flows achieved far less

precision. The reason for that is because turbulence modelling try to approximate

an extremely complicated phenomena. The turbulence model used throughout the

research project belong to class of models in where the the turbulence length scale

is related to some typical flow dimension.

B.1 One Equation Spalart-Allmaras Model

Using the same convection as for the mean flow equations, the Spalart-Allmaras

(1992) one equation turbulence model can be written in a ALE integral conservative

form as

∂

∂t

∫
V(t)

ρυtdV +
∮
S(t)

[
F⃗t −

1

Re
G⃗t

]
· n⃗ dS =

∫
V(t)

St dV (B.1)

where the flux vector F⃗t and G⃗t and the source term St are given by

F⃗t = ρυt u⃗ (B.2)

G⃗t =
1

σ
(µl + ρυt) ∇⃗υt (B.3)
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St = cb1P ρυt +
ρ

Re

[
cb2
σ

(
∇⃗υt

)2

− cw1fw

(
υt

d

)2]
(B.4)

The turbulent eddy viscosity µt is related to the turbulent unknown ρυt through

the relation

µt = ρυt fv1 (B.5)

in equations (B.1-B.5) the following functions are used

fv1 =
χ3

χ3 + c3v1
(B.6)

χ =
ρυt

µl

(B.7)

P =
∣∣∣∇⃗ × u⃗

∣∣∣+ ξfv2 (B.8)

ξ =
1

Re

υt

κ2d2
(B.9)

fv2 = 1− χ

1 + χfv1

(B.10)

fw = g

(
1 + c6w3

g6 + c6w3

)1/6

(B.11)

g = r + cw2 (r
6 − r) (B.12)

r =
ξ

P
(B.13)

For all calculations the following constants are used

κ = 0.41, σ = 2
3
, cb1 = 0.1355,

cb2 = 0.622, cw1 = cb1
κ2 + 1+cb2

σ
, cw2 = 0.3,

cw3 = 2.0, cv1 = 7.1

(B.14)

B.2 Linearised Turbulence Model

Following the same procedure as for the mean flow equations, the Spalart-Allmaras

turbulence model can be written in a frequency domain linearised form as

∂

∂τ

∫
V
ρ̂υtdV +

∮
S

( ̂⃗
F t −

1

Re

̂⃗
Gt

)
· n⃗dS −

∫
V

(
iωρ̂υt + Ŝt

)
dV =

Ĥt

(
ρυt,U,

̂⃗x) (B.15)
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The linearised inviscid and viscous fluxes are given by the two relations

̂⃗
F t = ρ̂υt

(
v⃗ − Ω⃗× x⃗

)
+ ρυt

̂⃗v (B.16)̂⃗
Gt = (µl + ρυt) ∇⃗υ̂t + (µ̂l + ρ̂υt) ∇⃗υt (B.17)

The linearised eddy viscosity is given by

µ̂t = ρ̂υt fv1 (B.18)

The terms Ĥ and the right-hand side of equation (B.15) indicates the summation

of inhomogeneous terms arising from the grid motion.

Ĥt =
∫
V

(
iωρυt + St

)
dV̂ −

∮
S

(
F⃗ t −

1

Re
G⃗t

)
· ⃗̂ndS

+
∮
S
ρυt

(
Ω⃗× ̂⃗x− iω ̂⃗x) · n⃗dS (B.19)

The linearised source term Ŝt is given by the relation

Ŝt = cb1
(
P ρ̂υt + P̂ ρυt

)
+

2ρ

Re

[
cb2
σ

(
∇⃗υt

) (
∇⃗υ̂t

)
− cw1fw

υtυ̂t

d2

]
(B.20)

with

P̂ =
∣∣∣∇⃗ × ̂⃗u∣∣∣+ fv2

Re

υ̂t

κ2d2
(B.21)

The functions fv1, fv2 and fw in (B.18), (B.20) and (B.21) are evaluated using the

steady-state unknowns.



Appendix C

Aerodynamic Forcing Functions

A method for calculating potential, vortical and entropic components of unsteady

flow-field is presented in this appendix. The method, based upon the Goldstein’s

splitting theorem and the linearised acoustic equations, evaluates the aerodynamic

forcing functions from a steady-state solution to impose as on coming unsteadiness

to a single bladerow. Such boundary conditions can be used for both linear and non-

linear unsteady computations with the difference that, for the linear simulation,

only one harmonic at a time can be used. The procedure starts from some steady-

state data of the adjacent bladerow boundary, either the outflow of the upstream

blade or the inflow of the downstream blade. The steady-state flow data could be

either computed or measured.

C.1 Spatial Non-uniformities

The first step for calculating the aerodynamic forcing functions, originating from

an adjacent bladerow, is to analyse the Fourier components of the data at a given

far-field boundary. In the reference frame fixed with a given blade row ‘1’, the

flow field is steady but possesses spatial flow non-uniformities. In this way, at

a given far-field boundary the steady-state primitive variables, in axisymmetric

coordinates, can be expressed as the sum of an axisymmetric steady-state part

plus a steady-state non-uniform part:

V (x, θ1, r) = V (x, r) + Ṽ (x, θ1, r) (C.1)
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The steady-state non-uniform part can be Fourier decomposed because of period-

icity in the tangential direction.

Ṽ (x, θ1, r) =
∑

Ṽm (x, r) exp (iκθθ1) (C.2)

The tangential wave number κθ is given by

κθ =
2πm

∆θ1
(C.3)

where ∆θ1 is the blade-to-blade spacing and m is the mode number.

If one considers a bladerow ‘2’, adjacent to bladerow ‘1’, then the tangential posi-

tions θ1 and θ2 are related to the rotational velocities Ω1 and Ω2 and time t by:

θ1 + Ω1t = θ2 + Ω2t (C.4)

Substituting (C.4) into (C.3) one can obtain:

2πm

∆θ1
θ1 =

2πm

∆θ1
θ2 −

2πm (Ω1 − Ω2)

∆θ1
t (C.5)

and in a different notation;

2πm

∆θ1
θ1 = − ϕ2

∆θ2
θ2 − ω2t (C.6)

So the the stationary mth mode in bladerow ‘1’ is equivalent to an unsteady mode

in blade row ‘2’ with reduced frequency

ω2 =
2πm (Ω1 − Ω2)

∆θ1
(C.7)

and interblade phase angle:

ϕ2 = −2πm∆θ2
∆θ1

(C.8)

In order to maintain all frequencies ω2 positive, the summation in (C.2) has to be

for m > 0 in the case of (Ω1 − Ω2) > 0 and for m < 0 in the case of (Ω1 − Ω2) < 0.

The harmonic boundary terms that go with this mode are:

V̂ (x, θ2, r) = Ṽm (x, r) exp

(
− iϕ2

∆θ2
θ2

)
(C.9)
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C.2 Vortical, Potential and Entropy Splitting

In the development of the linear theory, the flow non-uniformities Ṽ (x, θ, r) are

assumed to be small relative to the uniform steady flow properties V (x, r). Un-

der such approximation it is possible to recover the linearised acoustic equations

(Anderson 1990).

1

c2
Dp̃

Dt
+ ρ ∇⃗ · ˜⃗v = 0 (C.10)

ρ
D˜⃗v
Dt

+ ∇⃗p̃ = 0 (C.11)

Ds̃

Dt
= 0 (C.12)

According to Goldstein’s splitting theorem (Goldstein 1978), the perturbation ve-

locity ˜⃗v can be decomposed into the sum of (i) a rotational component ˜⃗vv that is

purely convected, has zero divergence and is completely decoupled from the fluctu-

ations in pressure or in any other thermodynamic property and (ii) an irrotational

disturbance ˜⃗vp that produces no entropy fluctuations but is directly related to the

pressure fluctuations.

˜⃗v = ˜⃗vv +
˜⃗vp (C.13)

The rotational velocity field is also known as the vortical perturbation, and the irro-

tational perturbation is also referred to as the potential (or acoustic) perturbation.

Finally the fluctuations in entropy are decoupled from the velocity and pressure

fluctuations, but do produce density fluctuations which are convected with the flow.

Summarizing, three different modes of motion can be solution of the linearised

acoustic equations (C.10-C.12): vortical, potential and entropy mode. In the fol-

lowing three paragraphs these modes will be analysed in detail in axisymmetric

coordinate, neglecting the radial components of v⃗.

Vortical mode

The Goldstein’s splitting assumes that any vortical perturbation satisfies the fol-

lowing constraints:
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∇⃗ · ˜⃗vv = 0 (C.14)

D˜⃗vv

Dt
= 0 (C.15)

p̃v = 0 (C.16)

ρ̃v = 0 (C.17)

The steady-state form of (C.15) shows that the vortical propagation wave vector

κ⃗ must be perpendicular to the blade mean flow exit velocity vector. Hence the

scalar product must be zero:

k⃗ · v⃗ = 0 (C.18)

The tangential wave number is given in (C.3) while the axial wave number of the

vortical mode, derived from (C.18) becomes:

κxm
= −vθ

vx

κθm (C.19)

From (C.14) and (C.18), it is straightforward to show that the vortical mode mag-

nitude vector must be parallel to the mean flow exit velocity vector. Denoting the

complex constant of proportionality Dm the vortical perturbation can be written

as:

˜⃗vv = v⃗
∑

Dm exp (iκ⃗m · x⃗) = v⃗
∑

Dm exp
[
iκθm

(
θ − vθ

vx

x
)]

(C.20)

Equation (C.20) shows that the vortical perturbation propagates unattenuated

both in the tangential and axial directions (κ⃗ contains only real part). Section C.3

will show how to calculate the complex constant of proportionality Dm.

Potential mode

The potential velocity field can be derived from a potential function

˜⃗vp = ∇⃗ψp (C.21)
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and the perturbation potential is related to the perturbation pressure through the

unsteady Bernoulli equation

p̃p = −ρDψp

Dt
(C.22)

The isentropic relation gives the perturbation density as a function of the pertur-

bation pressure

ρ̃p =
1

c2
p̃p (C.23)

Combing equations (C.21) and (C.22) with (C.10) it is possible to obtain the fol-

lowing linear velocity potential equation.

1

c2
ψptt +

2

c

(
Mxψpxt

+M θψpθt

)
=(

1−M
2

x

)
ψpxx

− 2MxM θψpxθ
+
(
1−M

2

θ

)
ψpθθ

(C.24)

The steady-state version of (C.24) has solutions of the form:

ψp =
∑

Am exp (iκθmθ + χmx) (C.25)

where the axial decay χm is

χm =
iMxM θ ± sign (κθm)

√
1−M

2

1−M
2

x

κθm (C.26)

Clearly the qualitative behaviour of this perturbation depends on whether the flow

is subsonic or supersonic.

Subsonic mean flow
(
M < 1

)
: χm has both real and imaginary components. If

one is interested in perturbation at the inlet boundary, then it is not physical to

have perturbation growing exponentially downstream, and so the negative root of

(C.26) must be chosen. On the other hand, the positive root must be chosen for

perturbation at outlet boundary. It is interesting to note that the rate of decay of

the perturbation depends linearly on the tangential wave number component κθm .

As a consequence the most important mode is the fundamental mode κθ1 =
2π
∆θ

.
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Supersonic mean flow
(
M > 1

)
: if the flow is still axially subsonic

(
Mx < 1

)
, χm

has only an imaginary component. To determine which root should be chosen in

(C.26), the supersonic characteristic theory has to be used (Giles 1991). For an

inlet boundary, the positive root should be chosen if the flow angle is positive and

negative root if the flow angle is negative, vice-versa for an outlet boundary.

Entropy mode

This mode is associated only with density fluctuations and like the vortical pertur-

bation is convected with the mean flow, without any axial decay:

ρ̃e = ρ
∑

Bm exp
[
iκθm

(
θ − vθ

vx

x
)]

(C.27)

˜⃗ve = 0 (C.28)

p̃e = 0 (C.29)

C.3 Matching Linear Theory and Available Data

The complex constants Am, Bm and Dm can be determined by matching the linear

theory with the measured or computed perturbation quantities Ṽ (Manwaring

1993).

Using equations (C.20),(C.21), (C.22) and (C.25) the relationship between the

linear theory and the perturbation quantities Ṽ can be expressed as:


χm vx

iκm vθ

−ρ (vxχm + ivθκm) 0


 Am

Dm

 =


ṽxm

ṽθm

p̃m

 (C.30)

and combing (C.27) and (C.25)

Bm =
1

ρ

(
ρ̃m − 1

c2
p̃m

)
(C.31)

System (C.30) can also written in a compact notation

[T] a = b (C.32)
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Matrix [T] depends on the tangential wave number, thus Am and Dm take different

values for each harmonic analysed. Relation (C.32) represents an overdetermined

system of equations which can be solved using a least-squares (LS) method which

minimizes the L2 norm of the difference between [T] a and b. The most widely

used method for solving a full column rank 1 LS problem is the method of normal

equations (Golub et al. 1991).

Introducing a diagonal weighting matrix [W] specifying the relative weighting of

the three quantities on the right-hand side of (C.30), a LS solution of (C.32), using

the method of normal equations, is given by:

[T]T [W] [T] a = [T]T [W]b (C.33)

Following the procedure of Feiereisen et al. (1994), only two weighting factors are

used in W: Wv for the two velocity components ṽxm
, ṽθm and Wp for the static

pressure p̃m:

[W] =


Wv 0 0

0 Wv 0

0 0 Wp

 (C.34)

The LS method will break down in two distinct cases: (i) Wv = 0 and (ii) incom-

pressible flow with Wv = Wp (Feiereisen et al. 1994).

C.4 Example

In order to illustrate the proposed method, let us consider the outflow boundary of

a stator blade. The computed data is first Fourier decomposed along the tangential

direction and then system (C.33) is solved for each Fourier component, to obtain

the vortical, potential and entropy waves amplitudes Dm, Am and Bm, using Wv =

Wp = 0.5. These quantities are then used to reconstruct the flow quantities at the

boundary using an inverse Fourier transform. The results are shown in Fig. C.1

where the reconstructed variables are obtained using the first Fourier components.

1A Least squares problem [T]a = b with [T] ∈ Rem × n, a ∈ Ren and b ∈ Rem is said to be

full column rank when rank[T] = n, i.e. the columns of [T] are linear independent.
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Figure C.1: Comparison between the computed steady data and the reconstructed

vortical, potential and entropy components using first 10 harmonics.



Appendix D

Preconditioned Agglomeration

Multigrid for Hybrid Grids

A preconditioned directional-implicit agglomeration multigrid method has been

developed for the solution of the linear and non-linear Navier-Stokes equations

on highly anisotropic unstructured hybrid grids in 2D and 3D. The coarse grid

levels are constructed automatically from the fine grid by agglomerating fine grid

control volumes together. Since the coarse grid control volumes may have arbitrary

polygonal shapes, the type of elements constituting the fine grid is irrelevant. In

this way the discrete equations on coarse grid levels are assembled automatically

without the explicit creation of a coarse grid. The multigrid smoother consists of

a preconditioned point- or line-Jacobi Runge-Kutta relaxation algorithm, which

guarantees efficient damping of high frequency error modes on highly stretched

grids.

D.1 Introduction

The basic idea of a multigrid strategy is to obtain a faster rate of development of

the solution on a fine grid by approximating the fine-grid problem on successively

coarser grids. With suitable coarse-grid approximations of the fine-grid problem,

the low-frequency error components on the fine grid appear as high-frequency er-

ror components on the coarser grids. The low-frequency components on the fine

grid, where the discrete solution is desired, are precisely the error components that

dramatically slow down the convergence of single-grid schemes. There are two

195
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additional advantages derived from displacing part of the effort in solving a set

of discrete equations to coarse grids. First, a larger mesh spacing permits larger

time steps thus allowing a faster propagation of the informations in the domain of

interest. This point is of particular importance for convection dominated problems

such as the ones described by the Euler and Navier-Stokes equations. Such equa-

tions exhibit both elliptic and hyperbolic properties in their discrete formulations

meaning that the coarse meshes in the multigrid cycle serve the dual role of en-

hancing both damping and propagation of error modes. Another advantage of the

coarse grids is that they require less computational effort because of the reduced

degrees of freedom involved compared with the fine grid. For example, in 2D the

computational effort needed is decreased roughly by a factor of four on successively

coarser meshes.

Multigrid methods have proven to be very effective techniques for accelerating

convergence to steady state of both elliptic and hyperbolic problems. For simple

elliptic problems, such as a Poisson equation, convergence rates of 0.1 are achiev-

able, meaning that for each multigrid cycle, the numerical error can be reduced by

one order of magnitude (Mavriplis 1998b). For hyperbolic problems, such as the

Euler equations, the best rate that theoretically can be achieved for a second order

discretisation is 0.75, according to the analysis discussed by Mulder (1992).

On the other hand, the development of efficient numerical methods for the solution

of the high-Reynolds number viscous flow remains one of the ongoing challenge in

the field of computational fluid dynamics. Multigrid Navier-Stokes solvers generally

result in convergence rates which are an order of magnitude or more slower than

those obtained for inviscid flows (Mavriplis 1998a, Pierce & Giles 1997). The main

reason for this breakdown in efficiency of the multigrid algorithm stems from the

need to use a computational mesh that is highly resolved in the direction normal to

the wall in order to accurately represent the steep gradients in the boundary layer.

Indeed, the higher the Reynolds number, the more grid stretching is required, and

the worse the convergence rate becomes. The design of an appropriate numerical

approach must therefore be based on a careful assessment of the interaction between

the discrete method, the computational mesh and the physics of the viscous flow.

Over the last few years, different methods have been proposed to overcame the

increased stiffness of the discrete system of equations due to high aspect ratio cells.

Mulder (1989) proposed a semi-coarsening multigrid strategy in which the mesh

is coarsened only in the direction normal to the grid stretching, rather then in
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all coordinate simultaneously. One major drawback of semi-coarsening techniques

is that they results in coarse grids of higher complexity. While full coarsening

approach reduces grid complexity between successively coarser levels by a factor of

4 in 2D, and 8 in 3D, semi-coarsening techniques only achieve a grid complexity

reduction of 2, in both 2D and 3D. This increase the costs of a multigrid cycle

especially in 3D. More recently Pierce & Giles (1997) and Pierce et al. (1997)

have proposed preconditioning methods, coupled with explicit multistage scheme,

as a less expensive approach to overcoming multigrid breakdown in the presence of

boundary layer anisotropy.

Following the analysis by Pierce et al. (1997), two different form of precon-

ditioner were implemented in the numerical method presented in this research

project. These preconditioners are either the point- or line-Jacobian matrix ob-

tained through a linearisation of the first order discretisation of the Navier-Stokes

equations. In 3D the point-Jacobian preconditioner is a block-matrix 5× 5 which

can be directly inverted at a reasonable costs. Mavriplis (1998b, 1998a) reviews

these multigrid strategies for viscous flow solvers on anisotropic hybrids grids in

the context of agglomeration multigrid.

D.2 Algorithm Description

The main difficulty with multigrid techniques on hybrid unstructured grids is the

generation of coarse grids. On structured grids, a sequence of grids can be con-

structed trivially by omitting alternate grid points in each direction. In the case

of unstructured grid four main approaches can be adopted. The first strategy is to

produce a sequence of fine grids from a coarse grid by refinement. The advantage

is that the inter-grid operators become simple because of the nesting of the grid.

The major drawback of such method is the predetermination of the coarsest level

in the multigrid. This may be too fine if the geometry is to be captured on the

coarse grid. Another method, labelled non-nested multigrid, uses a sequence of

grids which are generated independently by a grid generator. Piecewise-linear in-

terpolation operators for the transference of flow variables, residuals and correction

are derived during a pre-processing stage by using efficient search procedures. Non-

nested multigrid method has been shown to be quite successful on unstructured

grid computations (Peraire et al. 1992). However, the generation of the sequence

of grid is not automatic and requires a robust mesh generator. In addition, the
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development of efficient Piecewise-linear interpolation operators on hybrid grid is

not a straightforward task. A third approach is the edge collapse multigrid which

uses an automatic point removal algorithm to generate a sequence of coarse grids

from an initial fine grid. This is completely automatic and has been successfully

adopted for hybrid unstructured meshes (Moinier et al. 1999).

A completely different approach is the generation of coarse grids through agglom-

eration as developed by Mavriplis & Venkatakrishnan (1995a, 1995b). The central

idea of agglomeration multigrid is to form coarse grid levels by fusing fine grid con-

trol volumes together as shown in Fig. D.1. Since the coarse grid levels may have

arbitrary polygonal shapes (polyhedral in 3D), the type of elements constituting

the fine grid is irrelevant.

B

A

Fine grid

Fine grid control volumes

Coarse grid control volumes

Figure D.1: Example of two agglomerated coarse grid volumes
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An edge-based solver performs all the operations utilizing the volumes and edge

coefficients only, thus it can handle an arbitrary polyhedral coarse grid in a straight-

forward way. The fluxes in the coarse grid levels are evaluated using a the first-order

Roe’upwind solver for polyhedral grids developed by Barth & Jespersen (1989).

The agglomeration procedure can be interpreted as a Galerkin coarse grid approx-

imation (Wesseling 1992). Agglomeration can thus viewed as identifying all of the

fine grid cells with the coarse cell to which they belong, and then summing the

equations corresponding to these cells. Interpreted in this manner, agglomeration

multigrid is similar to algebraic multigrid procedure. In a purely algebraic multi-

grid, which is strictly valid for linear system, no underlying grid is defined, and

only the matrix A of a linear system As = b is known. The coarse grid operator

is then obtained by a direct summation of the non-zero entries in the fine level

matrix. Agglomeration multigrid represents an extension of these ideas to non-

linear systems. In this approach, only the solution independent terms are summed

in going from fine to coarse levels. For example in Fig. D.1, edge AB represents

the summation of the edge vector in the fine grid which are common between the

two coarse agglomerated cells. The solution dependent terms are obtained from

coarse level variables interpolated up from the fine level solution, following a Full

Approximation Storage scheme (FAS).

D.2.1 FAS scheme

In this section a description of the full approximation storage (FAS) multigrid

scheme is given. Suppose that successively coarser agglomerated grids are intro-

duced, with the grids numbered from 1 to K, where grid 1 is the original mesh.

For k > 1, the evolution on grid k is driven by a weighted average of the residuals

calculated on grid k − 1, so that each mesh simulates the evolution that would

have occurred on the next finer mesh (Jameson 1985, Wesseling 1992). When the

coarsest grid has been reached, changes in the solution calculated on each mesh

are consecutively interpolated back to the next finer grid.

The fine grid system of equations is written for both steady-state and unsteady

nonlinear flow as well as linearised unsteady flow, as:

[P]−1 LτδU = R (U) (D.1)
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with Lτ indicating the pseudo time-marching Runge-Kutta operator. The discrete

system of equations for a general grid k can be written as

[P]−1 LτδU
k = Rk − Fk (D.2)

where Fk represents the multigrid forcing function which is needed in order to

simulates the evolution process in the finer grid. This forcing function is zero for

the finer grid (k = 1) while for k > 1 it assumes the following form:

Fk = R (Uk

old)−ΘRk−1→k

Res
(R (Uk − 1

old )− Fk − 1) (D.3)

Uk

old = ΘRk−1→k

Unk
Uk − 1

old (D.4)

The symbol Θ represent inter-grid transfer operators which will be defined shortly.

The coarse grid equations are solver for Uk with starting solution Uk
old. The cor-

rection are then interpolated back to the fine grid as

Uk − 1

new = Uk − 1

old +ΘPk→k−1

(Uk

new −Uk

old) (D.5)

One of the principal advantages of this FAS algorithm is that it enables an efficient

solution strategy which requires little more memory than that of the single grid

solver (Wesseling 1992).

A recursive algorithm, which allows the use of an arbitrary number of meshes in

either a V or W type cycles, has been implemented following the approach by

Peraire et al. (1992).

D.2.2 Transfer Operators

Three inter-grid transfer operators need to be defined in order to have a complete

description of the algorithm.

Restriction: transfers the solution and residual vector from fine to coarse grids.

Here a simple injection has been employed.

ΘRk−1→k

Unk
Uk − 1 =

1

Vk

nc∑
c=1

(VU)k − 1

Ic
(D.6)

ΘRk−1→k

Res
Rk − 1 =

nc∑
c=1

Rk − 1

Ic
(D.7)
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where nc represents the number of control volumes in the fine grid k−1 contained in

the agglomerated coarse grid control volume. In Fig. D.1 shows two agglomerated

coarse control volumes which contains four fine control volumes each.

Prolongation: transfers the change of the solution from coarse to fine grid. Since

a set of fine control volumes are included in one coarse agglomerated cell only, a

simple copy of the coarse grid correction has been used.

ΘPk→k−1

(∆Uk) = ∆Uk (D.8)

Multigrid theory (Wesseling 1992) suggests that

mR +mP > mE (D.9)

where mR and mP are the order of polynomial that the restriction and the prolon-

gation can transfer exactly, and mE is the order of the differential equation, which

is 2 for the Navier-Stokes equations. Both transfer operators described in (D.6)

and (D.8) can transfer correctly only first order polynomial, thus violating (D.9) in

the case of Navier-Stokes equations. Unfortunately, devising higher order transfer

operators in the case of agglomerated grids is non-trivial because of the absence of

an underlying grid. However, the use of an efficient smoother can alleviate such a

drawback by being effective in removing high-frequency errors resulting from the

corrections from the fine-grid approximation.

D.3 Smoother

Having established the multigrid strategy and the transfer operators to be used, it

remains to define the smoother Lτ in (D.1). Efficient multigrid performance relays

heavily on the ability of the smoother to damp on the current mesh all the modes

that cannot be resolved without aliasing on the next coarser mesh in the cycle

(Pierce & Giles 1997). Moreover for hyperbolic problems, the smoother must en-

hance the propagation of error modes outside the computational domain. Broadly

speaking, relaxation methods are traditionally classified into explicit and implicit

scheme. Explicit scheme offers a low operation count, low storage requirements but

they suffer from limited stability imposed by the CFL conditions. Implicit schemes



D.3- Smoother 202

theoretically offer unconditional stability and presumably insensitiveness to the de-

gree of anisotropy in the problem to be solved. In practice direct implicit method

are infeasible for large 3D problems due to high operation counts and memory re-

quirements so that the inversion of the Jacobian matrix must be performed using

iterative or approximate factorization techniques. Such techniques are only moder-

ately implicit and are not efficient when very large time-steps are employed so that

it is not possible to benefits the unconditional stability. Moreover such schemes,

often design for isotropic problems, degrade with increasing anisotropy. Here an

efficient solution strategy for highly anisotropic problems based on preconditioned

point-Jacobi or line-Jacobi multistage Runge-Kutta scheme has been employed.

D.3.1 Time-stepping

From (3.32), (3.35) and (4.38), the the semi-discrete finite volume discretisation of

the Navier-Stokes system of equations appears as

[P]−1 LτUI = RI (U) (D.10)

where [P]−1 is the preconditioner. A Q-stage scheme for the grid level k can be

written as:

Uk

0 = Uk

old

...

Uk

q + 1 = Uk

0 + αq [P]
(
Rk

q − Fk
)

(D.11)

...

Uk

new = Uk

Q

where αq are the Runge-Kutta parameters. Throughout this work the five-stage

Runge-Kutta scheme of Jameson (1993) with alternate evaluation of the physical

and artificial dissipation has been used. If one indicates withQk
q the convective part

and with Dk
q the dissipation part of the residual Rk

q in (D.11) then from Jameson

(1993)

Qk

q = Q
(
Uk

q

)
Dk

q = βqD
(
Uk

q

)
+ (1− βq)D

k

q − 1 (D.12)

Rk

q = Qk

q +Dk

q
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If one reduces the linear model corresponding to (D.11) to an ordinary differential

equation and indicates with Ûnew = ψ (Z) Ûold the Fourier amplitude evolution,

where |ψ (Z)| is the amplification factor of the integration, the resulting Fourier

symbol has an imaginary part which is proportional to the wave speed and a nega-

tive real part proportional to the diffusion. The coefficients αq in (D.11) are chosen

to maximize the stability interval along the imaginary axis and βq are chosen to

increase the stability interval along the negative real axis. The five-stage scheme

which has been found to be particularly effective (Jameson 1993) has coefficients

α1 = 1/4 β1 = 1

α2 = 1/6 β2 = 0

α2 = 3/8 β3 = 0.56

α2 = 1/2 β4 = 0

α2 = 1 β5 = 0.44

(D.13)

The stability region of this five-stage Runge-Kutta time-stepping is shown in Fig.

D.2.

A first order spatial discretisation on the coarse levels is employed while retaining

the second order accurate discretisation on the fine grid. This corresponds to the

use of a defect-correction scheme on the coarser levels of the multigrid algorithm

(Mavriplis 1998c).

D.3.2 Preconditioners

Following the approach of Pierce et al (1997), Mavriplis (1998b, 1998a), a point-

implicit or a line-implicit Jacobi preconditioner has been used in order to give some

degree of implicitness to the multistage scheme. The Jacobi preconditioner can be

view as a characteristic time-step in contrast with a local time-step also called

scalar preconditioner.

Point-implicit Jacobi Preconditioner The point-implicit Jacobi precondi-

tioner is based on the form of the discrete residual operator and is obtained by

extracting the terms corresponding to the central node in the stencil. Referring to

(3.16) and (3.31) the point-Jacobi preconditioner [P]−1

PJ
for a point I is given by

[P]−1

PJ
= − 1

σ

∂RI

∂UI

=
1

σ

mI∑
s = 1

|η⃗IJs| |AIJs|+ τIJs

∂GlIJs

∂UI

∣∣∣∣∣
µ

 (D.14)
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Figure D.2: Stability region and contours defined by |ψ (Z)| = 0.2, 0.4, ...1 for a

5-stage Runge-Kutta time stepping scheme.

where σ is the CFL number. In the derivation of (D.14) the contribution of the

source terms has been neglected. For the linearised Navier-Stokes equation the

preconditioner assumes the same form and it is evaluated using the steady-state

unknown, i.e.

[
P
]−1

PJ
=

1

σ

mI∑
s = 1

|η⃗IJs|
∣∣∣AIJs

∣∣∣+ τIJs

∂GlIJs

∂UI

∣∣∣∣∣
µ

 (D.15)

[P]−1

PJ
is a 5× 5 matrix which can be directly inverted using a standard algorithm.

The preconditioner [P]−1

PJ
has been obtained considering only the first order dis-
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cretisation even when a second order scheme is used. This procedure is analogous

to the practice of using a first order discretisation for the Jacobian in implicit

methods (defect correction procedure).

Note that for a scalar dissipation scheme, as the one by Jameson et al. (1981),

the contribution of the artificial viscosity to [P]−1

PJ
becomes diagonal and the scalar

time-step estimate is recovered. Thus for a scalar dissipation scheme the smoother

becomes a standard explicit multistage algorithm.

In conjunction with preconditioner (D.14), no other techniques such as residual

smoothing (Jameson 1981, Arnone 1995) are employed.

Line-implicit Jacobi Preconditioner In computing high Reynolds number

flows, with no-slip boundary condition at solid walls, the problem of grid anisotropy

has been tackled by using a directional agglomeration multigrid strategy coupled

with a line-implicit smoother. The combination of these two strategies into a single

algorithm has been found to result in a more robust and efficient solution method

than the use of either strategy alone (Mavriplis 1998b, 1998a).

Directional coarsening techniques were developed in order to overcome the problem

related to the directional decoupling in highly stretched grids. Coarsening the grid

in the stretching direction allows the smoother to efficiently damp the high error

mode along the coarsening direction (Mulder 1989, Pierce et al. 1997). However

standard directional coarsening techniques results in sequence of coarse grid levels

for which the complexity between successive levels decreases by a factor of 2. The

higher complexity of the directionally coarsened levels greatly increases memory

overheads and make the use of multigrid W-cycles impractical (Mavriplis 1998b).

An alternative approach is obtained with a directional coarsening technique with

a fine-to-coarse grid ratio of 4:1. In such case a more efficient smoother in the

coarsening direction must be employed. This is obtained by using a lime-implicit

preconditioner which achieves superior smoothing of error components along the di-

rection of the implicit lines, as compared with the point-implicit method (Mavriplis

1998b, 1998a). An example of line construction in the boundary layer region of a

turbine blade is given in Fig. D.3.

The line-implicit Jacobi preconditioner is obtained by including the complete in-

viscid and Laplacian operators in the normal direction but only the component

corresponding to the central node for the other directions. The resulting matrix

represent a tridiagonal 5 × 5 block system which has been solved using a Jacobi
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iterative procedure.

D.4 Example

The steady-state flow over a 2D turbine blade were used in order to assess the effi-

ciency of the line-implicit preconditioner coupled with a full directional coarsening

in the boundary layer. The directional line in this region are shown in Fig. D.3

while the control volumes of the fine mesh and three successively agglomerated grid

are shown in Fig. D.4 The test case correspond to the 11th International Standard

Configuration at transonic off-design conditions studied in Chapter 4. Fig. D.5

show the convergence history of the density residual using two and four grids in

a W-type cycle. The convergence history of the implicit (single grid) method of

Sayma et al. (2000) is also plotted.

D.5 Concluding Remarks

(i) Efficient steady-state and linearised unsteady calculations can be performed us-

ing the multigrid relaxation scheme presented in the Appendix. The line-Jacobi

preconditioner is used for turbulent viscous flow solved up to the wall while the

point-Jacobi version is used for the other flow representations. (ii) The precon-

ditioned agglomeration multigrid needs to be improved in order to enhance both

performance and robustness, especially in 3D. A more accurate prolongation op-

erator need to be developed. This task is non-trivial because of the absence of

an underlying grid. The preconditioner may cause some instabilities at stagna-

tion points, where large variations of the flow angle appear at significant velocity

values. This loss of robustness can be attributed to a flow-angle sensitivity thus

improvement in this direction should be made.
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Figure D.3: 11th Standard Configuration. Directional lines



D.4- Example 208

(a) Fine grid (b) grid 2

(c) grid 3 (d) grid 4

Figure D.4: 11th Standard Configuration (turbulent flow calculation up to the wall).

Agglomerated control volumes
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Figure D.5: 11th Standard Configuration (turbulent flow calculation up to the wall):

convergence histories


